Методы и модели в экономике
Шаг 1.3. Составление нового плана перевозок. соответствует клетка К31.
-30 10 |
+20 10 | |
∆1= |
+40 - |
-35 25 |
Θ == 10. Составим новый план перевозки.
Итерация 2.
Шаг 2.1. Вычисление потенциалов
20 15 |
45 - |
0 - |
u1=0 | |
30 - |
20 20 |
0 - |
u2=-5 | |
|
40 10 |
35 15 |
0 5 |
u3=-20 |
v1=20 |
v2=15 |
v3=-20 |
Система для плана имеет вид:
Полагая u1=0, находим значения всех потенциалов: (0; -5; -20; 20; 15; -20).
Шаг 2.2. Проверка на оптимальность. Составляем таблицу оценок .
0 |
-35 |
-20 |
u1=0 | |
-5 |
0 |
-15 |
u2=-5 | |
∆1= |
0 |
0 |
0 |
u3=-20 |
v1=20 |
v2=15 |
v3=-20 |
Так как все оценки ≤0, следовательно, план - оптимальный.
Х оптим = (0; -5; -20; 20; 15; -20), следовательно, оптимальное значение целевой функции: (руб.).
Ответ: Х оптим = (0; -5; -20; 20; 15; -20), L(X) = 1625 руб.
Задача №2
2. Решить графически задачу: найти экстремумы функции , если , .
Решить симплекс-методом
РЕШЕНИЕ
а) Решим задачу графически при
z = 3x1 – 2x2 → max
, .
Построим на плоскости прямые ограничений, вычислив координаты точек пересечения этих прямых с осями координат (рис.1).
|
Рис.1. Графическое решение задачи при z = 3x1 – 2x2 → max
Строим вектор из точки (0;0) в точку (3; -2). Точка Е (7;0) – это последняя вершина многоугольника допустимых решений, через которую проходит линия уровня, двигаясь по направлению вектора . Поэтому Е – это точка максимума целевой функции. Тогда максимальное значение функции равно:
.
б) Решим задачу графически при
z = 3x1 – 2x2 → min
, .
Построим на плоскости прямые ограничений, вычислив координаты точек пересечения этих прямых с осями координат (рис.2).
|
Рис.2. Графическое решение задачи при z = 3x1 – 2x2 → min
Строим вектор из точки (0;0) в точку (-3; 2). Точка Е (0;1) – это последняя вершина многоугольника допустимых решений, через которую проходит линия уровня, двигаясь по направлению вектора . Поэтому Е – это точка минимума целевой функции. Тогда минимальное значение функции равно:
.
Ответ: а) Функция z = 3x1 – 2x2 → max и равна 21 в точке (7;0).
б) Функция z = 3x1 – 2x2 → min и равна - 2 в точке (0;1).
Задача №3
Решить методом потенциалов транспортную задачу, где – цена перевозки единицы груза из пункта в пункт .
Решение
Поскольку суммарные запасы = 35 (ед. груза) и суммарные потребности = 48 (ед. груза) не совпадают (т.е. мы имеем дело с открытой транспортной задачей), необходимо ввести фиктивный пункт производства . Тогда транспортная матрица будет иметь следующий вид (табл.1).
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели