Системы железнодорожной радиосвязи
На перегонах большой протяженности, когда не удается выполнить условие (2) при установке стационарных радиостанций на промежуточных пунктах, следует устанавливать дополнительную радиостанцию, подключив ее к линейному проводному каналу поездного диспетчера, либо обеспечив дистанционное управление его со стороны ДСП соседних станций.
Для обеспечения работы проводного канала связи радиосети ПР
С-С используются: распорядительная станция СР-34, устройство сопряжения УС-2/4; блоки управления постоянным током БУП, устройства обхода дуплексных усилителей ОУ-ДУ; стационарные радиостанции РС-6; вводно-защитные устройства ВЗУ. Избирательное подключение к каналам связи РС и вызов СР осуществляется с помощью двух частотных кодовых сигналов, обеспечивающих индивидуальный вызов до 28 абонентов.
В целях резервирования проводного канала поездной диспетчерской связи следует обеспечивать уверенную радиосвязь между соседними cтационарными радиостанциями.
Тот или иной способ передачи высокочастотной энергии должен выбираться на основе технико-экономического сравнения вариантов с учетом конкретных условий: вида тяги, длины перегонов, наличия скоростного движения поездов и т.д.
1.3 Расчет дальности связи в гектометровом диапазоне
При использовании антенн
При использование гектометрового диапазона волн передачу информации можно обеспечить излучением и приемом электромагнитных волн при помощи антенн. В этом случае рассчитать напряженность поля в точке приема по формулам Шулейкина - Ван-дер-Поля:
(мВ/м); (1.3)
; . (1.4)
Здесь РА - мощность, подводимая к антенне в Вт; - к. п. д. антенны; для стационарных Г-образных антенн =0,25 для высоты подвеса 15 м, 0,38 - для 20 м, 0,49 - для 30 м; D=1,5 - коэффициент направленного действия антенны; l - расстояние в км до точки приёма; W - множитель ослабления, зависящий от расстояния и параметров почвы; l - длина волны, м (l = 140,7 м для 2,13 МГц, l = 139,4 м для 2,15 МГц); s - проводимость почвы в См/м; e - относительная диэлектрическая проницаемость почвы.
Для случая, когда токи проводимости много больше токов смещения, т.е. 60l s >> e, то . (Последнее выражение для расстояния l в км). Для другого крайнего случая, когда токи смещения больше токов проводимости в почве 60l s << e,
(последнее выражение для расстояния l в км).
Для значений > 25 выражение принимает простой вид .
Подводимая мощность зависит от длины фидера lф и затухания в устройстве согласования
aсу: ,
где Р - выходная мощность радиостанции, заданная в таблице; aф - погонное затухание в фидере на 1 м его длины, равно (0,7-0,8) ×10-2 дБ/м, aсу= 1,5 дБ.
При проектировании ПРС для расчёта напряженности поля в середине участка в нашем случае достаточно взять дальность l в км, длину волны l в м, проводимость и диэлектрическую проницаемость и по формулам (3) и (4) с учётом соотношений между токами проводимости и смещения рассчитать напряженность поля волны.
Для обеспечения уверенной связи необходимо, чтобы уровень напряженности поля для соответствующего участка железнодорожной линии был не меньше величин, приведенных на странице 10. При этом обеспечивается нормальное функционирование систем ПPC и отношение сигнал/помеха не менее 2.
Из этих соображений и необходимо рассчитывать дальность радиосвязи на перегоне в гектометровом диапазоне. Более подробно помехи описаны в [2, гл.2].
1.4 Расчет дальности связи в гектометровом диапазоне при использовании направляющих линий
Дальность уверенной радиосвязи, км, между стационарными и локомотивными радиостанциями при применении направляющих линий
, (1.5)
где Адоп - максимально допустимое затухание сигнала в радиотракте,дБ, (при одновременной работе на антенну и запитку волноводной линии затухание равно 145 дБ [6]);
- суммарные затухания соответственно в станционных, линейных и локомотивных устройствах поездной радиосвязи, дБ;
Апер -переходное затухание между направляющими проводами и локомотивной антенной, дБ (см. [2] § 5.4, и данные в табл.1.4);
αнп - постоянная затухания направляющих проводов на перегоне, дБ/км (см. [2] § 5.2, и данные в табл.1.4). Затухание сигнала в локомотивных устройствах определяется в основном к. п. д. согласующего устройства и составляет = 2 дБ.
Суммарное затухание, дБ, на станционных устройствах радиосвязи в общем случае
, (1.6)
где aф - погонное затухание фидера; дБ/м; lф - длина фидера, соединяющего радиостанцию с согласующим устройством, м;
асу - затухание, вносимое согласующим устройством, равно 1,5 дБ;
η - к. п. д. индуктивного способа возбуждения направляющих проводов (см. рис. 5.12 в [2]) - изменяется от 1 при непосредственном присоединении к направляющим проводам до 0,4 при несогласовании нагрузки: для расчёта использовать значение 0,6);
a0 - концевое затухание (a0=5 дБ).
Концевое затухание учитывается только при возбуждении волноводного провода и проводов воздушной линии связи, так как при этом только часть мощности передатчика радиостанции передается межпроводной волной, распространяющейся с малым затухание и обеспечивающей радиосвязь на больших расстояниях.
Таблица 1.4
Переходное и километрическое затухания Таблица 1.4 . Переходное затухание и километрическое затухание | ||
Характеристики тракта |
Апер, дБ |
αнп, дБ/км |
Противофазное возбуждение проводов ДПР, подвешенных с одной стороны пути Волноводный провод на участке с электрической тягой постоянного тока Синфазное возбуждение проводов ДПР, подвешенных с разных сторон пути Синфазное возбуждение проводов цветной цепи линии связи. Линия связи удалена от оси пути на 15 м |
38 32 32 45 |
1 -1,2 2-2,5 4,5 - 6 1,8-2,4 |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем