Оценка качества монтажных соединений электронной аппаратуры

Таким образом, адгезия сопровождается образованием прослойки между МОС и соединяемыми поверхностями, физические свойства прослойки будут отличаться от свойств исходных материалов. Это дает обоснование возможности использования концепции прореагировавшего вещества (ПВ) при моделировании процессов формирования свойств МОС в составе соединения, и представляется возможным использование молекулярно

– кинетического и феноменологического термодинамического описание процессов.

Молекулярно – кинетическое описание рассматриваемых процессов может быть основано на справедливости использования закона действия масс, определяющий кинетику химических реакций, допускающего следующую формулировку: «скорость химической реакции пропорциональна частоте соударений между молекулами в единице объема и, следовательно, пропорциональна мольно-объемным концентрациям Wi реагирующих веществ в данный момент, взятых в степенях, которые соответствуют их стехиометрическим коэффициентам».

Можно предположить, что и в случае отсутствия химической связи в рассматриваемой среде, скорость образование связей между молекулами во вновь образованном ПВ подчиняется аналогичному механизму, обусловленному частотой столкновения молекул, зависящей от концентрация реагирующих веществ.

Величиной, характеризующей скорость реакции, не зависящей от взятых концентраций, является константа скорости . Константа скорости численно равна скорости реакции при концентрациях реагирующих веществ, равных единице. Уравнение скорости химической реакции можно представить

,(2.11)

где – стехиометрические коэффициенты;

– концентрации, участвующих в реакции веществ .

Уравнение (2.11) называется дифференциальным кинетическим уравнением. Сумма показателей степени, в которую возводятся концентрации в уравнении (2.11) определяет порядок реакции.

Для двухкомпонентной среды, при одинаковой концентрации реагирующих веществ кинетическое уравнение (2.11) для реакции n-го порядка будет

.(2.12)

Интегрируя, получим

.(2.13)

Для начального момента времени t0, равного нулю, W=W0. Следовательно

.

Такое же соотношение будет иметь место при избытке одного из реагирующих веществ, тогда концентрация этого вещества остается постоянной и ее можно объединить с константой скорости в выражении (2.11) и прийти к соотношению (2.12).

Концепция ПВ соответствует возможности использования активации процессов образования соединений, предусматривающей повышение температуры и перевод МОС в жидкофазное состояние.

Согласно теории активации, доля активных молекул и доля активных соударений при повышении температуры растут быстрее средней кинетической энергии молекул. Соотношение между числом активных соударений z' и общим числом соударений z можно установить при помощи закона распределения энергий Больцмана. Если обозначить через Ко константу скорости при условии, что каждое соударение эффективно, то

.

Отсюда

.(2.14)

Приближенно можно считать

,(2.15)

что приводит к известному уравнению Аррениуса и подтверждает справедливость его при описании кинетики ПВ.

Таким образом, полученное выражение позволяет оценить увеличение скорости возникновения ПВ, при температурной активации материала.

Другим важным фактором, определяющим свойства рассматриваемой среды, является массоперенос ПВ. Представляется возможным оценить влияние связанных с массопереносом процессов на свойства МОС с помощью феноменологического описания моделей поведения среды. В рамках феноменологического описания основой моделирования служит понятие о необратимых процессах, происходящих в среде содержащей источники (стоки) и вызываемые этими источниками потоки зарядов, вещества, физического поля. Источниками здесь можно рассматривать продукты физико-химических реакций, происходящих на поверхности среды, образующие прореагировавшее вещество (ПВ) и распространяющееся в среде, согласно законам кинетического описания процессов. В течение всего времени активации компоненты МОС необратимо стремятся к состоянию термодинамического равновесия, совершая некоторую работу по перестройке его структуры.

2.3 Модель формирования поверхности разрыва при испытаниях МОС на прочность

При исследовании процессов формирования ПР, в рамках основного направления исследований, представляет интерес характер геометрии ПР [26, 27]. Здесь, основываясь на идеализированной модели соединения, которая состоит из поверхности соединяемого материала (начальной поверхности) и находящегося на этой поверхности слоя МОС, можно ввести прямоугольную систему координат , плоскость которой, совпадает с начальной поверхностью. Можно предположить, что представление этой поверхности в виде плоскости не скажется заметно на результатах, позволяющих определить характер геометрии ПР.

Условием разрушения МОС является приложение такого внешнего усилия, когда внутреннее напряжение достигает предела прочности . Если предположить, что предел прочности является функцией концентрации ПВ, т.е. определена функция , а так же распределение концентрации ПВ по оси задается функцией , то по условию можно найти координату , для которой выполняется соотношение

,(2.16)

и, следовательно, определить координату ПР.

Для различных значений зависимость может иметь различный вид, следовательно (2.16) выполняется для различных значений , и это приводит к появлению неровностей ПР.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы