Новая высокоэффективная технология дезактивации радиоактивных солевых растворов и сточных вод с извлечением ценных компонентов и их возвратом в технологический цикл

Количество образующегося при озонировании осадка зависит от состава кубового остатка и составляет от 1 до 4 г на литр исходного раствора, то есть не превышает одного процента. Проведенный гранулометрический анализ показал, что в состав осадка от озонирования входят частицы с размерами от 0,1 до 30 мкм. Для выведения такого осадка целесообразно фильтрацию раствора проводить в две стадии: предвар

ительная фильтрация на фильтре, задерживающем частицы с размерами не менее 5 мкм, и микрофильтрация на мембранном фильтре с мембранами типа Trumem с размером пор не более 0.2 мкм. Использование предварительной фильтрации уменьшает нагрузку на мембранный фильтр и увеличивает длительность межрегенерационного цикла фильтрации.

Таким образом, основными технологическими стадиями процесса очистки ЖРО на установке ионоселективной очистки являются предварительная фильтрация и подготовка исходного раствора, озонирование, фильтрация и селективная сорбция. После озонирования и фильтрации очищаемый раствор направляют на селективную сорбцию цезия на ферроцианидных сорбентах, в качестве которых рекомендуются Термоксид-35 или НЖС. Сорбция проводится на двух последовательно соединенных фильтрах-контейнерах (ФК). Конечными продуктами переработки являются: очищенный от радионуклидов солевой раствор; отработавший сорбент в фильтрах-контейнерах (объёмная активность в сотни раз выше, чем у исходного ЖРО); шлам с фильтров, образующийся в результате озонирования (объемная активность находится на уровне исходных ЖРО).

Опираясь на результаты лабораторных испытаний и испытаний опытных установок, разработан проект промышленной установки ионоселективной очистки ЖРО АЭС, принципиальная технологическая схема которой приведена на рисунке 1.

Кубовые остатки (КО) после отделения крупных взвесей на предварительном фильтре (на рисунке не показан) направляются в одну из двух приемных емкостей ПЕ, где производится корректировка рН раствора до необходимого значения щелочью из емкости реагентов ЕР, подогрев с помощью пара до заданной температуры и перемешивание. Далее раствор насосом Н1 направляется через эжектор Э на озонирование. Озонирование проводится в периодическом режиме по контуру: приемная емкость – насос – эжектор – приемная емкость. Эжектор обеспечивает необходимую поверхность и интенсивность массообмена озонирования раствора подачей озона, получаемого в узле генерирования озона УГО. Озонирование заканчивается при достижении объемной активности раствора по Со и Мn установленной величины, определяемой по анализу проб.

Рисунок 1. Принципиальная технологическая схема УИСО ЕР – емкость реагентов; ПЕ – приемная емкость; Э – эжектор; УГО – узел генерации озона; УМФ – узел микрофильтрации; ЕШ – емкость шлама; ЕФ – емкость фильтрата; ФК – фильтр-контейнер; КЕ – контрольная емкость; Н1-Н4 – насосы; ЛО – линия очистки

Проводится обратная корректировка рН раствора азотной кислотой, поступающей в приемную емкость из второй емкости реагентов ЕР, после чего раствор направляется на предварительную и микрофильтрацию в узле УМФ. Затем фильтрат КО поступает в емкости фильтрата ЕФ и далее насосом Н2 прокачивается через линию очистки ЛО – два последовательно соединенных фильтра-контейнера ФК (рис.4) с ферроцианидным сорбентом цезия - в одну из контрольных емкостей КЕ. Если объемная активность пробы из емкости КЕ оказывается ниже установленного уровня по Cs, то очищенный от радионуклидов кубовый остаток насосами направляют в емкость приема очищенного раствора и далее на установку кристаллизации. Если объемная активность раствора будет выше установленного уровня по 134,137Cs, то фильтрат насосом Н4 направляется в третий фильтр-контейнер на доочистку от цезия. Выбор любой из последовательностей пропускания кубового остатка через фильтры-контейнеры и заполнения емкостей обеспечивается запорной арматурой. После выработки ресурса первого по ходу раствора фильтра-контейнера его отключают. Второй фильтр становится первым, третий – вторым и т.д.

Рисунок 2. Конструктивная схема и фотография фильтра-контейнера

Для очистки фильтров узла микрофильтрации проводится их периодическая промывка со сбросом шламов в специальную емкость ЕШ. По мере накопления определенного объема неосветляемого шлама, он перекачивается в установку цементирования.

Очищенный от радионуклидов до уровней ниже десяти уровней вмешательства по воде в соответствии с требованиями Норм радиационной безопасности – 99 кубовый остаток с объемной активностью менее 10 Бк/дм3 может быть упарен до сухих солей и захоронен на полигоне низкотоксичных отходов. Отработавший сорбент, размещенный непосредственно в фильтре-контейнере, после исчерпания ресурса направляется на временное хранение. При необходимости сорбент может быть отвержден непосредственно в фильтре с помощью высокопроникающих цементных растворов, что позволит получить кондиционный продукт не только по выщелачиванию, но и по прочности на сжатие. Проведенные комплексные испытания Пилотной установки ионоселективной очистки ЖРО от радионуклидов полностью подтвердили работоспособность основных узлов и установки в целом, функциональность и результативность выбранной технологии, определили возможность создания промышленного образца установки.

Изобретение относится к технологии очистки от радионуклидов водных радиоактивных растворов, в частности жидких радиоактивных отходов (ЖРО) ядерных энергетических установок и других технологических растворов, имеющих высокий солевой фон и содержащих примеси в виде минеральных масел и твердых взвесей.

При очистке ЖРО, содержащих высокие (более 1 г/л) концентрации катионов натрия, калия, кальция и др., а также примеси в виде минеральных масел и твердых взвесей, возникает проблема эффективного извлечения радионуклидов по причине отсутствия универсального сорбента, позволяющего извлекать из раствора радионуклиды на фоне других конкурирующих катионов, а также в связи с необходимостью проведения специальной стадии предочистки ЖРО от взвесей, нефтепродуктов и т.п.

Известен способ очистки водных радиоактивных растворов от радионуклидов, в частности ЖРО, содержащих радионуклиды цезия и стронция (см. патент РФ 2112289, МПК 6 G 21 F 9/04, В 01 J 20/02, С 02 F 9/00, 1998), согласно которому раствор ЖРО подают на стадию предочистки, включающую блоки механической очистки, ультрафильтрационный и микрофильтрационный блок, затем пропускают через селективный неорганический сорбент на основе ферроцианидов переходных металлов меди, никеля, кобальта и пористого неорганического носителя, после чего проводят обработку ЖРО в обратноосмотическом модуле в одну стадию при содержании солей менее 1 г/л и в две стадии при содержании солей более 1 г/л с разделением потоков на концентрат и пермеат, подвергаемый доочистке путем пропускания через сорбент, выбранный из ряда: синтетический цеолит "А", ионообменные смолы, шабазит гексагональной структуры, природный цеолит моноклинной структуры. Недостатками известного способа являются непригодность его для очистки ЖРО с высоким солевым фоном, сложность и многостадийность, использование целого ряда селективных сорбентов, необходимость проведения специальной стадии предочистки ЖРО от взвесей и нефтепродуктов, а также сосредоточение радионуклидов в жидком концентрате, объем которого составляет около 25% от объема исходного раствора ЖРО и требует дальнейшей переработки. Известен также способ очистки водных радиоактивных растворов от радионуклидов, в частности воды высокого уровня активности (см. патент РФ 2090944, МПК 6 G 21 F 9/12, 1997), включающий фильтрацию радиоактивного раствора при регулировании рН через комбинированную гранулированную загрузку из неорганических сорбентов, в качестве которых используют катионообменные фосфат циркония и/или фосфат титана в водородной и солевой формах, а объемное соотношение водородной и солевой форм катионообменных сорбентов в комбинированной загрузке составляет 1: 2-2: 1, отделение сорбента с поглощенными им радионуклидами от раствора и захоронение сорбента. Водородную и солевую формы сорбента в комбинированной загрузке располагают слоями, при этом первый по ходу очищаемой воды слой содержит сорбент в водородной форме, а второй слой содержит сорбент в солевой форме. Комбинированная загрузка может состоять и из смеси сорбентов в водородной и солевой формах. В качестве солевой формы используют литиевую, натриевую или калиевую формы. Для уменьшения гидравлического сопротивления слоя сорбентов используют сферогранулированный сорбент, получаемый золь-гель методом. Очистку воды по известному способу ведут в режиме рециркуляции, так как за одну стадию фильтрования требуемая степень очистки не может быть достигнута. Недостатками этого способа являются непригодность его для очистки ЖРО с высоким (более 1 г/л) солевым фоном, необходимость проведения предварительной специальной очистки ЖРО от взвесей и нефтепродуктов, так как в противном случае эти загрязнения обволакивают гранулы сорбентов и препятствуют диффузии радионуклидов из очищаемого раствора ЖРО в сорбент. К недостаткам способа можно отнести использование двух типов сорбентов - в водородной и солевой формах, а также то, что их применяют в гранулированном виде, имеющем ограниченную поверхность контакта. Использование сорбентов в гранулированном виде, кроме того, снижает полноту их использования и требует увеличения времени контакта сорбента и раствора ЖРО, поскольку диффузия радионуклидов внутрь гранулы сорбента, имеющей относительно большие размеры, затруднена. Настоящее изобретение направлено на решение задачи высокоэффективной очистки от радионуклидов ЖРО с высоким солевым фоном, содержащих дополнительно примеси в виде минеральных масел и твердых взвесей. Поставленная задача решается тем, что в способе очистки водных радиоактивных растворов от радионуклидов, включающем взаимодействие сорбента в виде фосфата титана в водородной форме с исходным радиоактивным раствором при регулировании рН раствора, отделение сорбента с поглощенными им радионуклидами от раствора и последующее захоронение насыщенного радионуклидами сорбента, согласно изобретению фосфат титана используют в порошкообразном состоянии, взаимодействие раствора и сорбента осуществляют стадийно в течение времени, достаточного для обеспечения на каждой стадии очистки равновесного состояния между раствором и сорбентом, при этом взаимодействие раствора и сорбента ведут при перемешивании, а число стадий N устанавливают исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению:

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы