Новая высокоэффективная технология дезактивации радиоактивных солевых растворов и сточных вод с извлечением ценных компонентов и их возвратом в технологический цикл
Введение
очистка радиоактивный отход атомный
Одной из основных проблем, определяющих существование и дальнейшее развитие атомной энергетики, является решение задачи сбора и кондиционирования радиоактивных отходов.
Для ряда АЭС, например, Кольской атомной станции, решение проблемы кондиционирования жидких радиоактивных отходов дает возможность продлить срок эксплуатации энергоблоко
в, что особенно важно для всего Северо-Западного региона страны. Таким образом, задача надежной локализации радиоактивных отходов перерастает из частной экологической и экономической задачи отдельной станции в экономическую, экологическую и социальную задачу региона.
Глава 1. Метод ионоселективной очистки жидких радиоактивных отходов атомных станций
Жидкие радиоактивные отходы (ЖРО) АЭС в виде кубовых остатков представляют собой солевые растворы высокой концентрации, загрязненные продуктами деления, радионуклидами коррозионного происхождения, различными веществами, используемыми для поддержания водно-химического режима и дезактивации оборудования. Традиционными методами переработки кубовых остатков являются глубокое упаривание, цементирование и битумирование. Эти методы позволяют перевести ЖРО в инертную форму, пригодную для захоронения, но не дают значительного сокращения объема конечного радиоактивного продукта.
Коэффициенты сокращения объема при использовании различных методов кондиционирования имеют порядок: для цементирования – 0,9…1,3; битумирования –1,5…2.5; глубокого упаривания – 2…3; остекловывания – 3…4; селективной сорбции – 70…90. Существенно более высокие возможности селективной сорбции в сокращении объемов конечного радиоактивного продукта определяют её преимущества по сравнению с другими методами переработки кубовых остатков, позволяя сконцентрировать радионуклиды ЖРО в небольшом объеме сорбента. Известно использование метода селективной сорбции, но без очистки растворов от радионуклидов переходных металлов, для переработки кубовых остатков на АЭС Ловиза (Финляндия). Радиоактивные вещества в растворах кубовых остатков находятся в виде простых и комплексных ионов, нейтральных молекул и коллоидных частиц. Основными радионуклидами в кубовых остатках являются 134, 137 Cs, 60Co, 54Mn. Для изотопов цезия характерна ионная форма нахождения. Радионуклиды кобальта и марганца в кубовых остатках находятся в форме комплексов с соединениями, которые широко используются для дезактивации оборудования. На АЭС наиболее часто такими веществами являются этилендиаминацетат натрия (ЭДТА) и щавелевая кислота. Нахождение кобальта и марганца в комплексной, а потому в несорбируемой форме, определяет необходимость разрушения комплексов для решения проблемы выделения этих радионуклидов из растворов. Кроме того, необходимость разрушения органики, присутствующей в кубовом остатке, определяется её отравляющим воздействием на ферроцианидные сорбенты цезия, снижающим ресурс последних. Кубовые остатки АЭС имеют водородный показатель - рН от 8 до 13, т.е. являются щелочной средой. В таких средах для разрушения комплексных соединений радионуклидов наиболее пригодными способами являются перманганатное окисление, озонирование и электрохимическое окисление. Все эти способы обладают высоким окислительным потенциалом в щелочной среде.
Однако, при электрохимическом окислении кубовых остатков неизбежно происходит выделение водорода, кроме того недостаточен ресурс работы электродов, существует проблема очистки электродов от отложений; главными недостатками перманганатного окисления являются образование значительного количества осадка диоксида марганца и недостаточная эффективность очистки по 60Со.
Выбор метода озонирования для деструктивного окисления растворов, содержащих комплексоны, обусловлен следующими его преимуществами: – озонирование разрушает с достаточно высокой скоростью практически любые органические соединения, в том числе и комплексообразующие; – образующиеся при окислении комплексонов продукты деструкции не ухудшают параметры дальнейших процессов, поэтому озонирование может использоваться практически на любой стадии технологической схемы очистки растворов без ухудшения общих ее показателей;
– образующиеся в процессе самораспада озона и его взаимодействия с молекулами воды продукты радикального характера имеют потенциал окисления выше, чем у исходной молекулы озона, что обуславливает высокую эффективность использования озона в технологических процессах; – степень токсичности продуктов, образующихся при окислении комплексонов озоном, значительно ниже исходных соединений;
– озонирование является практически безотходным способом очистки, поскольку озон синтезируют из кислорода воздуха и продуктом его распада также является кислород, т.е. в ходе процесса очистки не происходит образования вторичных загрязнений растворов;
– озон является одним из немногих окислителей, участвующих в природных химических и биохимических процессах, следствием чего является его совместимость (до определенных пределов) с окружающей средой;
– получение озона непосредственно в ходе процесса обработки растворов устраняет необходимость в получении и хранении больших количеств реагентов на обработку раствора, а также обеспечивает быстрое устранение аварийной ситуации, связанной с попаданием озона во внешнюю среду, простым отключением генератора озона;
– процессы озонирования используют в промышленности достаточно широко для водоподготовки и обработки сточных вод. В настоящее время промышленностью налажен серийный выпуск оборудования производительностью от 1 г до 15 кг озона в час.
В процессе озонирования кубовых остатков одновременно происходит несколько физико-химических превращений. Имеет место разрушение комплексов и органических веществ, "отравляющих" сорбенты. В результате разрушения комплексов 60Со и 54Mn переходят в сорбируемую форму. В тоже время, происходит образование твердой фазы гидрооксидов и оксидов переходных металлов (Fe, Ni, Cr и др.), присутствующих в исходном кубовом остатке. На гидроксидах и оксидах происходит соосаждение радионуклидов кобальта и марганца за счет адсорбционных процессов. Полнота окисления комплексов в значительной степени определяет степень извлечения радионуклидов 60Со и 54Mn.
На степень извлечения 60Со и 54Mn при соосаждении на гидроксидах влияет рН раствора. При высоких рН возрастает растворимость гидроксидов, и, следовательно, снижается полнота выделения 60Со и 54Mn. При рН больше 12 коэффициент распределения 60Со и 54Mn начинает снижаться. С другой стороны, определено, что при значениях рН раствора больше 12 начинается разрушение ферроцианидных сорбентов, используемых для селективной сорбции радионуклидов цезия. Поэтому после завершения процесса озонирования необходимо провести корректировку рН раствора до значений меньше 12. Однако при рН раствора меньше 11 проявляется резкое снижение растворимости боратов, присутствующих в растворах. Таким образом, с учетом всех факторов: снижения растворимости гидроксидов и повышения коэффициента распределения кобальта и марганца, отсутствия выпадения боратов из кубового остатка и сохранения высокой эффективности ферроцианидных сорбентов к радионуклидам цезия, корректировка рН раствора после завершения озонирования должна проводиться до значения, равного 11.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль