Экстракционно-фотометрический метод определения тяжелых металлов в природных водах
Поэтому обычно относительная погрешность спектрофотометрических (фото- и колориметрических) методик составляют в среднем около 20 - 25 % (хотя приборная погрешность фотометра не превышает 1 - 2%).
Тем не менее, эти приборы остаются лидерами по распространенности среди других универсальных приборов лабораторного анализа.
Из отечественных спектрофотометров «сканирующего» типа в настоящее
время наиболее хорошо известен широкополосной (спектральный диапазон 190 - 1100 нм) и высокоточный (погрешность измерения ± 0,25-0,5 %) однолучевой автоматизированный спектрофотометр СФ-56А, управляемый персональным компьютером. По своим аналитическим возможностям, эксплуатационным и метрологическим характеристикам, а также по стоимости (примерно 5100 $ без компьютера) на сегодня действительно универсальным прибором для экоаналитических лабораторий может считаться СФ - 56. Другие модели: СФ - 2000 (~4800 $ без компьютера), СФ - 46 (б/у от 2800 $).
Среди более дешевых отечественных фотометрических приборов можно отметить базовую модель Загорского оптико-механического завода - фотоколориметр КФК - 3 (850 - 1000 $) со спектральным диапазоном 315 - 990 нм и основной абсолютной погрешностью при измерении коэффициента пропускания 0,5 %.
Другие модели: портативный переносной КФК-05, микрофотоколориметры МКФМ-02, МКМФ-02П.
Возможности использования анализатора жидкости флюорат 02-3м для анализа питьевой и природной воды
Государственное унитарное предприятие "Центр исследования и контроля воды", осуществляющее регулярный контроль питьевых и сточных вод предприятий Санкт-Петербурга, имеет многолетний опыт разработки методик выполнения измерений и испытания средств измерения. В последние годы Центр исследования и контроля воды проводит большую методическую работу по опробованию современных аналитических приборов, предназначенных для оснащения химико-аналитических лабораторий. Это связано, прежде всего, с тем обстоятельством, что сложившаяся к настоящему времени практика использования инструментальных методов анализа и приборное оснащение лабораторий не вполне удовлетворяют современным требованиям, предъявляемым к чувствительности, селективности и сервисным удобствам.
В практике работы химико-аналитических лабораторий значительное число измерений выполняется с использованием фотометрического метода регистрации. Так, например, по данным Федерального центра ГСЭН, удельный вес фотометрического метода в лабораториях ЦГСЭН составляет около 60%, причем наибольшее применение этот метод находит при исследовании воды. Можно предположить, что такое же соотношение справедливо и для других лабораторий, осуществляющих контроль качества воды (лаборатории водопроводно-канализационных хозяйств, природоохранные лаборатории и т.п.).
В соответствии с программой исследований для каждого показателя проводилось три серии экспериментов: в первой серии объектом исследования служили контрольные растворы (готовились объемным методом из соответствующих Государственных стандартных образцов (ГСО), во второй - природная вода (исходная и с добавками ГСО), в третьей - питьевая вода (исходная и с добавками ГСО).
Благодаря тому, что в состав Центра исследования и контроля воды входят химико-аналитическими лаборатории, хорошо оснащенные современными приборами, имеющие богатый опыт выполнения физико-химических исследований, мы могли сравнить результаты, полученные с использованием анализатора ФЛЮОРАТ-02-3М с результатами, полученными на приборах, реализующих такие современные методы измерений как, например, атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой, капиллярный электрофорез и газожидкостная хроматография. Перечень приборов и используемых методов определения представлен в таблице 1.
Таблица 1.
определяемый компонент |
режим работы анализатора ФЛЮОРАТ-02-3М |
референтный прибор и метод определения |
мутность |
нефелометрия |
HACH 2100 ANIS, нефелометрия |
цветность |
фотометрия |
КФК-2, фотометрия |
ХПК |
фотометрия |
HACH DR-2000, фотометрия |
нитриты |
флуориметрия |
HACH DR-2000, фотометрия |
нитраты |
фотометрия |
HACH DR-2000, фотометрия QUANTA-4000Е, КЭФ |
ионы аммония |
фотометрия |
HACH DR-2000, фотометрия |
сульфаты |
турбидиметрия |
КФК-2, турбидиметрия QUANTA-4000Е, КЭФ |
фенолы |
флуориметрия |
ЦВЕТ-500М, ГЖХ |
АПАВ |
флуориметрия |
СФ-46, фотометрия |
алюминий |
флуориметрия |
ФЭК-56, фотометрия TRACE ANALYZER, ИСП-аэ |
бор |
флуориметрия |
TRACE ANALYZER, ИСП-аэ |
медь |
флуориметрия |
TRACE ANALYZER, ИСП-аэ |
цинк |
флуориметрия |
TRACE ANALYZER, ИСП-аэ |
железо общее |
фотометрия |
HACH DR-2000, фотометрия TRACE ANALYZER, ИСП-аэ |
Использование анализатора жидкости Флюорат 02-3М в качестве фотометра
Универсальная конструкция анализатора Флюорат-02-3М позволяет выполнять измерения оптической плотности и коэффициентов поглощения растворов. Разумеется, фотометрические характеристики универсального прибора оказываются не столь высокими, как у специализированного фотометра, но погрешности, возникающие при выполнении измерений, не оказывают существенного влияния на конечный результат, так как погрешность МВИ оказывается в десятки раз больше, чем погрешность собственно измерительного прибора.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль