Промышленная очистка сточной воды машиностроительного предприятия
Особую группу представляют окислительно-восстановительные полимеры или редокситы, обладающие способностью к окислительно-восстановительным реакциям.
При соприкосновении ионитов с водой происходит их набухание. Обычно применяемые промышленные образцы ионитов увеличивают свой объем при набухании в 1,5-2 раза.
Одной из основных характеристик ионитов является обменная емкость, предельная ве
личина которой определяется числом ионогенных групп. Полная емкость ионита - количество грамм - эквивалентов ионов, находящихся в воде, которое может поглотить 1м3 ионита до полного насыщения. Рабочая емкость ионита - количество грамм - эквивалентов ионов, которое может поглотить 1м3 ионита в фильтре при обработке воды до начала проскока в фильтрат поглощаемых ионов.
Характерной особенностью ионитов, важной для практического использования, является их обратимость, т.е. возможность проведения реакций в обратном направлении. Это дает возможность производить регенерацию ионитов [6].
Катиониты" включает сильнокислотные катиониты КУ-2-8, КУ-2-8чС, КУ-2-20, КУ-1, КУ-23 (в модификациях 10/60, 12/18, 15/100, 30/100) и слабокислотные катиониты КБ-2, КБ-2-4, КБ-4, КБ-4П-2, КБ-4-10П, КБ-2-7П, КБ-2-10П. ГОСТ 20301-74 "Смолы ионообменные. Аниониты" включает высокоосновные аниониты АВ-17-8, АВ-17-8чС, АВ-17П (в модификациях 10П/0,6; 10П/0,8; 12П/1,0), АВ-29-12П, АВ-16ГС и низкоосновные АН-21 (в модификациях 6 и 14), АН-18-8, АН-22-8, АН-221, АН-18П (в модификациях 10П и 12П), АН-31,АН-1, АН-2ФН, ЭДЭ-10П. В обоих ГОСТах содержатся требования и нормы по гранулометрическому составу ионитов (размер зерен, содержание рабочей фракции, эффективный размер зерен, коэффициент однородности), содержанию влаги, удельному объему катионитов в Н+ и Nа+ - формах и анионитов в ОН—форме, удельной поверхности, полной и равновесной статической обменной емкости (для низкоосновных анионитов только ПСОЕ), динамической обменной емкости (для катионитов - при полной и частичной регенерации), перманганатной окисляемости и рН фильтрата, осмотической стабильности, содержанию железа и хлора; для анионитов дополнительно нормируются содержанию щелочи, карбонатов и обесцвечивающая их способность.
Сильнокислотный катионит КУ-2-8 (ГОСТ 20298-74) имеет структуру геля, содержит только один вид ионообменных групп - сульфогруппу. Катионит получают сульфированием гранульного сополимера стирола с 8% дивинилбензола. Насыпная плотность товарного катионита 0,8т/м3. Обменная емкость в динамических условиях при полной регенерации 1360 экв/м3. В Н+ - форме катионит может работать в водных растворах при 110-1200С. При температуре до 1700С относительные потери обменной емкости вследствие десульфирования заметно возрастают и через 24ч достигают 19,5%. Катионит отличается высокой химической стойкостью в разбавленных растворах щелочей и кислот, органических растворителях и некоторых окислителях. Кипячение катионита в 5М растворе Н2SO4 или NаОН, в 1М НNO3 и 10% - ном растворе Н2О2 не снижает полную обменную емкость в статических условиях [6].
Сильнокислотный катионит КУ-2-8чС (ГОСТ 20298-74) представляет собой модификацию катионита КУ-2-8 и отличается от него особой чистотой. Применяется для глубокого обессоливания воды и разделения смесей различных элементов.
Сильнокислотный катионит КУ-2-20 (ГОСТ 20298-74) имеет гелевую структуру и отличается от КУ-2-8 высоким (20%) содержанием дивинилбензола. Выпускается в Н+ - форме, применяется для очистки растворов гальванических производств.
Сильнокислотный катионит КУ-23 (ГОСТ 20298-74) (химический аналог катионита КУ-2-8) имеет макропористую структуру, содержит только сульфогруппу. Его получают сульфированием гранульного макропористого сополимера стирола с дивинилбензолом. Отличается от катионита КУ-2-8 несколько меньшей обменной емкостью. Макропористая структура катионита обеспечивает его улучшенные кинетические свойства и повышенную осмотическую стабильность.
Высокоосновный анионит АВ-17-8 (ГОСТ 20301-74) имеет гелевую структуру, содержит только один вид ионогенных групп четвертичные аммониевые основания. Получают хлорметилированием сополимера стирола с 8% дивинилбензола с последующим взаимодействием с триметиламином. При комнатной температуре анионит сравнительно устойчив к действию разбавленных кислот, щелочей и окислителей. При кипячении в течение 30мин. в 5М растворах щелочей и серной кислоты обменная емкость в статических условиях снижается соответственно на 14 и 7%, при взаимодействии с 10% - ным раствором Н2О2 при комнатной температуре в течение 48ч - на 16,4%. Температурные пределы его использования зависят от требований, предъявляемых к обессоленной воде, и составляют 40-450С при обескремнивании воды (содержание кремниевой кислоты в фильтрате 10-15мкг/кг) и 85-900С при сорбции анионов минеральных кислот.
Анионит АВ-17-8чС (ГОСТ 20301-74) является модификацией анионита АВ-17-8 и отличается особой чистотой.
Высокоосновный анионит АВ-29-12П (ГОСТ 20301-74) имеет макропористую структуру. Получают суспензионной сополимеризацией стирола и ДВБ в присутствии порообразователя с последующим хлорметилированием, а затем аминированием сополимера диметилэтаноламином. По химической и термической стабильности несколько уступает аниониту АВ-17-8, но обладает более легкой регенерируемостью. Предназначается для процессов водоподготовки при невысоких требованиях к остаточному содержанию анионов кремниевой и угольной кислот и для очистки сточных вод [7].
1.5. Регенерация ионитов
В 1978г. компания Degremont запантентовала и предложила потребителям противоточную технологию регенерации ионитов под названием UFD. По этой технологии рабочий цикл осуществляется сверху вниз, а регенерация - снизу вверх. Весь внутренний объем фильтра заполняется активной смолой. Наличие инертного материала не является обязательным, и если он применяется, то исключительно для защиты верхнего распределительного устройства от ионитной мелочи (аналогично технологии SCHWEBEBETT). Благодаря такой загрузке фильтра слой ионита всегда находится в зажатом состоянии (как при проведении рабочего цикла, так и при регенерации); обеспечиваются варьирование рабочих скоростей потоков в очень широком диапазоне и возможность чередования технологических остановов с возобновлением рабочего цикла. Конструкция фильтра отличается простотой. Имеются верхнее и нижнее распределительные устройства, а в верхней части фильтра установлен штуцер для гидроперегрузки ионита, который обеспечивает возможность удаления 30…50% ионита во внешнюю емкость для промывки взрыхлением. Оставшийся в фильтре ионит также подтвергается взрыхлению.
Технология UFD позволяет эффективно удалять накопившиеся за время проведения рабочего цикла взвешенные вещества и ионитную мелочь и предотвращать тем самым появление одной из проблем, свойственных противоточным технологиям. Однако возникает другой, более существенный, недостаток (необходимость проведения двойной регенерации после каждого взрыхления), который сводит к нулю преимущества противотока, основанные на экономии реагентов.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль