Определение оптимального режима работы машины и указание рекомендуемый диапазон технологических и конструктивных параметров многоковшового роторного траншейного экскаватора
Интервал неопределенности будет иметь длину Ln, следовательно, Lп-1= 2 Ln – є (рис. 11, нижняя часть).
На предыдущем этапе точки хп-1 и хп-2 должны быть помещены симметрично внутри интервала Lп-2 на расстоянии Lп-1 от концов этого интервала. Следовательно,
Lп-2 = Lп-1 + Lп (рис. 5.2, средняя часть).
Из рисунка ясно, что на предпоследнем этапе хп-2 остается в качестве внутренней точк
и.
Аналогично Lп-3 = Lп-2 + Lп-1 (рис. 5.2, верхняя часть)
В общем случае
Lj-1 = Lj + Lj+1 при 1 < j < n.
Таким образом,
Lп-1 =2 Lп – ε,
Lп-2 = Lп-1+ Lп =3Lп – ε,
Lп-3 = Lп-2+ Lп-1 =5 Lп – ε,
Lп-4 = Lп-3+ Lп-2 =8 Lп – ε и т. д.
Если определить последовательность чисел Фибоначчи следующим образом:
F0= 1, F1 = 1 и Fk=Fk-1 + Fk-2 для k = 2,3, … , то
Ln-j=Fj+1 . Ln – Fj-1 . ε, j = 1,2, … , n-1
Если начальный интервал (а, b) имеет длину L1 (= b - а), то
L1=Fn . Ln – ε . Fn-2,
т.е.
Следовательно, произведя n вычислений функции, мы уменьшим начальный интервал неопределенности в 1/Fn раз по сравнению с его начальной длиной (пренебрегая ε) , и это — наилучший результат.
Если поиск начат, то его несложно продолжить, используя описанное выше правило симметрии. Следовательно, необходимо найти положение первой точки, которая помещается на расстоянии L 2 от одного из концов начального интервала, причем не важно, от какого конца, поскольку вторая точка помещается согласно правилу симметрии на расстоянии L2 от второго конца интервала:
После того как найдено положение первой точки, числа Фибоначчи больше не нужны. Используемое значение е может определяться из практических соображений. Оно должно быть меньше L1/Fn+1, в противном случае мы будем напрасно тратить время на вычисление функции. Таким образом, поиск методом Фибоначчи, названный так ввиду появления при поиске чисел Фибоначчи, является итерационной процедурой. В провесе поиска интервала (х1, х2) с точкой х2, уже лежащей в этом интервале, следующая точка x4 всегда выбирается такой, что х3 - x4 = x2 - x1 или х4 - х1 =х3 - х2, т. е. х4 = x1 - х2 + х3.
Если f(х2) > f(х4) и f(х4) < f(х2), то можно рассмотреть четыре случая, нахождения max функции методом Фибоначчи.
Рисунок 5.3. Четыре варианта расположения точек в интервале поиска max функции методом Фибоначчи
5.2 Определение min значения мощности методом золотого сечения
Не всегда можно заранее определить, сколько раз придется вычислять функцию. В методе Фибоначчи это нужно знать для определения L2, т. е. положения начальной точки.
Метод "золотого сечения" почти столь же эффективен, как и метод Фибоначчи, однако при этом не требуется знать п — количество вычислений функции, определяемое вначале. После того как выполнено j вычислений, исходя из тех же соображений, что и ранее, записываем
Lj-1 = Lj + Lj+1 .
Однако если п не известно, то мы не можем использовать условие Ln-1 = = 2Ln - ε. Если отношение последующих интервалов будет постоянным, т.е.
т. е. т = 1 + 1/τ.
Таким образом, τ 2 - τ -1 = 0, откуда . Тогда
и т. д.
Следовательно,
т.е
Рисунок 5.4 Поиск экстремума функции методом золотого сечения
В результате анализа двух рассмотренных значений функции будет определен тот интервал, который должен исследоваться в дальнейшем. Этот интервал будет содержать одну из предыдущих точек и следующую точку, помещаемую симметрично ей. Первая точка находится на расстоянии L1/τ от одного конца интервала, вторая — на таком же расстоянии от другого. Поскольку , то видно, что поиск методом "золотого сечения" является предельной формой поиска методом Фибоначчи. Название "золотое сечение" произошло от названия отношения в уравнении. Видно, что Lj-1 делится на две части так, что отношение целого к большей части равно отношению большей части к меньшей, т. е. равно так называемому "золотому отношению".
Рисунок 5.5. Четыре варианта расположения точек в интервале поиска min функции методом золотого сечения
6. Выводы и рекомендации
В процессе расчета оптимальных технико-экономических показателей работы многоковшового роторного траншейного экскаватора был проанализирован характер изменения его от частоты вращения вала n. По мнению наблюдателя определились следующие оптимальные значения технико-экономических показателей при n=0.145:
Qопт=780 м3/ч;
Pопт=21.22 кВт.
Зависимость графика Q(n) строго линейная, что позволяет увеличивать частоту вращения вплоть до значения, при котором производительность максимальна (указана в технической характеристике). Производительность может быть ограничена только потребляемой машиной мощностью изменяющейся в зависимости от частоты вращения и категории грунта.
График зависимости производительности Q и мощности Р от частоты вращения n.
7. Список литературы
1. конспект лекций
2. http://www.baurum.ru/_library/?cat=power_shovels&id=1209
3. Машины для земляных работ. Под общ. ред. чл.-кор. АН УССР проф. Ю. А. В е т р о в а. — 2-е изд., дораб. и доп. — Киев: Вища школа. Головное изд-во, 1981.— 384 с.
4.http://ru.wikipedia.org/wiki/Роторный_экскаватор
5.http://ru.wikipedia.org/wiki/Метод_золотого_сечения
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск