Термодинамика необратимых процессов и проблем экологии
TdS = dE + dA, (14)
называемое основным уравнением термодинамики для равновесных процессов, и неравенство:
TdS>dE + dA, (15)
называемое основным неравенством термодинамики для неравновесных процессов.
Процессы в макросистемах могут протекать только при условии выполнения соотношений (12).
Существует несколько эквивалентных формулировок второго начала термодинамики, они от
ражают исторический ход развития знаний в этой области и подчеркивают различные стороны проблемы.
Формулировка Клаузиуса (1850): процесс, при котором в системе не происходит никаких изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым; иначе говоря, теплота не может самопроизвольно перейти от более холодного тела к более горячему без каких-либо других изменений в системе.
Формулировка Томсона (Кельвина) (1851): процесс, при котором теплота переходит в работу, является необратимым; иначе говоря, невозможно преобразовать в работу всю теплоту, взятую от тела с однородной температурой, не производя никаких других изменений в состоянии системы.
Принцип невозможности создания вечного двигателя второго рода: невозможно создать периодически работающую машину, которая производила бы работу за счет поглощения теплотыодного теплового резервуара, не вызывая при этом никаких других изменений состояния системы. (Такую воображаемую машину принято называть вечным двигателем второго рода)
6. Обратимые и необратимые процессы
По второму началу термодинамики в природе возможны процессы, при которых превращение теплоты в работу связано с компенсацией, и невозможны процессы, при которых такое превращение не сопровождается компенсацией. Это приводит к делению всех процессов в замкнутой системе на обратимые и необратимые. Процесс перехода системы из состояния 1 в 2 называется обратимым, если возвращение этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений в окружающих внешних телах. Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в нельзя осуществить без изменений в окружающих телах. Очевидно, что всякий квазистатический процесс является обратимым. Действительно, при квазистатическом процессе состояние системы в каждый момент полностью определяется внешними параметрами и температурой, поэтому при равновесных изменениях этих параметров в обратном порядке система также в обратном порядке пройдет все состояния и придет в начальное состояние, не вызвав никакого изменения в окружающих телах.
При процессах с трением, как мы отмечали, работа может быть без компенсации превращена в теплоту; так как обратный переход системы из конечного состояния в начальное связан с переходом теплоты в работу, а это невозможно осуществить без изменения в окружающих телах, то, следовательно, процессы с трением необратимы. А так как всякий равновесный процесс обратим, то необратимый процесс с трением неравновесен.
Мерой необратимости процесса в замкнутой системе является изменение новой функции состояния - энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным. Верно и обратное заключение: всякий неравновесный процесс необратим, если в дополнение ко второму началу осуществляется достижимость любого состояния неравновесно, когда оно достижимо из данного равновесно [вся современная практика подтверждает выполнение этого условия; однако противоположное условие выполняется не всегда]. Деление процессов на обратимые и необратимые относится лишь к процессам, испытываемым изолированной системой в целом; разделение же процессов на равновесные и неравновесные с этим не связано.
В качестве примеров необратимых процессов приведем следующие:
1. Процесс теплопередачи при конечной разности температур, необратим, так как обратный переход связан с отнятием определенного количества теплоты у холодного тела, превращением его без компенсации (некомпенсировано) в работу и затратой ее на увеличение энергии нагретого тела. Необратимость этого процесса видна также из того, что он не статичен.
2. Расширение газа в пустоту необратимо, так как при таком расширении не совершается работа, а сжать газ так, чтобы не совершить работу, нельзя. Произведенная же при сжатии работа идет на нагревание газа. Чтобы газ не нагревался, нужно отнять у него теплоту и превратить ее в работу, что невозможно без компенсации.
3. Процесс диффузии необратим. Действительно, если в сосуде с двумя различными газами, разделенными перегородкой, снять перегородку, то каждый газ будет диффундировать в другой.
Для разделения газов каждый из них нужно сжимать. Чтобы они не нагревались, необходимо отнять у них теплоту и превратить ее в работу, что невозможно без изменения в окружающих телах.
7. О тепловой смерти мира
Постепенно все горячие тела будут отдавать энергию более холодным. Энтропия будет возрастать. Наконец, все температуры уравниваются. Энтропия достигнет максимума, что будет соответствовать полному хаосу. В мире останется только энергия беспорядочного движения молекул.
Никакое упорядоченное механическое движение тогда не может быть получено. Все процессы прекратятся. Наступит тепловая смерть мира. Эта проблема серьезно волновала ученых в конце XIX в.
Однако, во-первых, всю вселенную нельзя считать замкнутой системой, а наши рассуждения относятся только к таким системам. Во-вторых, уже говорилось о том, что переход от полного беспорядка к порядку очень маловероятен.
Поэтому применяется второе начало термодинамики ко всей Вселенной и необозримо большим промежуткам времени не следует.
8. Термодинамическая шкала температур. Третье начало термодинамики. Недостижимость абсолютного нуля
Второе начало термодинамики можно использовать для построения термодинамической шкалы температур. Так как КПД цикла Карно не зависит от рабочего тела, то можно вообразить такую процедуру.
Некоторое стандартное тело в определенном состоянии (например, вода, кипящая при атмосферном давлении) выбирается в качестве нагревателя. Другое стандартное тело (например, лед, тающий при атмосферном давлении) выбирается в качестве холодильника. Разность температур Тн и Гх (сами температуры пока неизвестны) делится на произвольное число частей, чем устанавливается размер градуса (скажем, на сто частей). Осуществляется обратимый цикл Карно с каким-либо веществом. Измеряется количество теплоты Q1, заимствованной от нагревателя, и количество теплоты Q2, отданной холодильнику:
(15)
Имея, кроме того, условие:
TH-TX=100°С,
получаем два уравнения, определяющие Tн и Тх. Если теперь взять некое вещество при неизвестной температуре Т и использовать его в качестве нагревателя при прежнем холодильнике (температура Tх), то, проводя цикл Карно и измеряя Q1’ и Q2’, можно написать:
Другие рефераты на тему «Экология и охрана природы»:
- Источники экологических опасностей. Пути гармонизации экологических отношений
- Экологическая опасность сточных вод пищевой промышленности
- Нормирование, сертификация и стандартизация в области охраны окружающей среды
- Гигиеническое значение химического состава воды
- Методика обнаружения нитратов в растениях
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль