Хромато-масс-спектрометрия и ее использование в идентификации загрязнителей природных сред
Спектроскопические интерференции могут быть подразделены на изобарные атомные ионы, многозарядные ионы, наложения больших сигналов и полиатомные ионы различного происхождения. Изобарные наложения существуют вследствие того, что изотопы различных элементов совпадают по их номинальной массе. Для каждого элемента, за исключением индия, может быть найден по крайней мере один изотоп, свободный от из
обарного наложения, но беда в том, что эти изотопы не являются наиболее интенсивными. Многозарядные ионы располагаются в масс-спектре в соответствии с значением m/z. Вклад в масс-спектр дают, главным образом, двухзарядные ионы основных компонентов матрицы и многозарядные ионы, образующиеся в процессах перезарядки с участием аргона. Сигналы соседних ионов с очень большой интенсивностью, например, происходящих от элементов матрицы, вносят значительные искажения в аналитический сигнал за счет наложения хвостов на соседние пики тогда, когда изотопическая чувствительность недостаточна. Полиатомные ионы могут состоять из атомов аргона и его примесей плюс компоненты растворителя и матрицы.
Из всех этих различных групп спектроскопических интерференций полиатомные ионы создают наиболее серьезные проблемы. Интерференции полиатомных ионов может вызываться самим анализируемым образцом. Например, оксиды могут остаться неразрушенными после прохождения через горячую зону плазмы вследствие того, что энергии разрыва их связей очень велики. Они могут быть внесены как примеси в процессах химической подготовки пробы или из газа плазмы и воздуха, захватываемого плазмой. В принципе, спектроскопические интерференции этого типа могут быть отделены от анализируемого изотопа при использовании масс-спектрометрии высокого разрешения.
Разрешение
Типичные примеры спектроскопических интерференций приведены в таблице 1. Один из наиболее дискутируемых примеров спектральной интерференции это 56Fe и 40Ar16O+. Последний ион происходит вследствие взаимодействия аргона с кислородом, содержащемся в растворителе. В этом примере в качестве альтернативы для измерения железа можно воспользоваться изотопами 54Fe, 57Fe и 58Fe, но на 58Fe накладывается изобарная интерференция от изотопа 58Ni. В тоже время существуют другие интерференции, такие как 40Ar14N+ или 40Ar16O1H+, что оставляет лучший альтернативный выбор за 57Fe. Однако, его природная распространенность всего 2.2% и предел обнаружения для данного элемента по этому изотопу при использовании прибора низкого разрешения очень плох. При этом, разрешение менее чем 2500 достаточно для того, чтобы отделить спектральные интерференции от анализируемого изотопа на массе m/z 56.
Еще более проблематичным является анализ 75As в том случае, когда хлор присутствует в анализируемом образце. Мышьяк является моноизотопным элементом, никакого альтернативного изотопа нельзя выбрать для проведения измерений, а необходимое для отстройки от интерференции разрешение должно быть увеличено до 7800, что реально лежит на верхнем коце шкалы разрешения, показанной в таблице 1. Однако, разрешение 3000 оказывается достаточным для того, чтобы освободиться от 90% случаев интерференций, вызванных полиатомными ионами. Коммерческие приборы высокого разрешения имеет максимальное разрешение в диапазоне от 7500 до 12,000, так что от большинства интерференций, приведенных в таблице 1 можно освободиться.
Тем не менее, высокое масс-спектральное разрешения не панацея от всех типов спектроскопических интерференций. Большинство изобарных интерференций не может быть разрешено с использованием коммерчески доступных приборов. Например, 58Fe, 58Ni и некоторые полиатомные соединения с аргоном, оксиды и гидриды требуют разрешения, которое лежит на самом пределе технически осуществимого сегодня или такого, которое вообще не может быть получено.
1.3 Приборы с двойной фокусировкой
Высокое масс-спектральное разрешение обычно достигается на приборах с двойной фокусировкой на базе использования магнитного и электростатического полей. Эти приборы имеет даже более древнюю традицию в масс-спектрометрии чем квадрупольные, но технически они являются более изощренными и, следовательно, стоят дороже. Сердцем прибора с двойной фокусировкой является магнит. Если ионы, имеющие одинаковую энергию, но различающиеся по массам, входят в магнитное поле перпендикулярно его направлению, они пролетают через это поле круговым траекториям под действием силы Лоренца. Радиусы их траекторий зависят от массы иона, что ведет к дисперсии по массам.
Если пучок ионов проходит через щель с определенным углом, то фокус этого пучка лежит позади магнитного поля. Разделение по массам может быть реализовано путем помещения щели позади магнитного поля в точке фокуса, что приведет к четко определенным радиусам и вобору специфической массы. Уменьшение ширины щели может быть использовано для увеличения масс-спектрального разрешения, но только в том случае, если ионы являются моноэнергетичными, поскольку любое распределение по энергиям будет ухудшать разрешение. С этой точки зрения индуктивно-связанная плазма не является идеальным методом ионизации. Распределение ионов по энергием является слишком широким для того, чтобы быть приемлемым для работы магнитного масс-спектрометра в режиме высокого разрешения.
Для того, чтобы достичь высокого разрешения используется дисперсия энергии электрического поля, в точности компенсирующая дисперсию энергии магнита так, чтобы осталась только дисперсия по массам. Магнитный и электростатический анализаторы обладают свойством углового фокусирования и их комбинация фокусирует заряженные частицы и по углам и по энергиям. По этой причине масс-спектрометры с такими анализаторами называют приборами с двойной фокусировкой.
Возможны различные типы геометрии при комбинировании электрического и магнитного анализаторов. Последовательность магнитного и электростатического анализаторов может быть взаимно-противоположной. Традиционно, электростатический анализатор помещался перед магнитом. Электростатический анализатор с отклонением 90о комбинировался с магнитным с отклонением 60о, что широко известно как геометрия Нира-Джонсона. В современных приборах используется так называемая «обратная геометрия» Нира-Джонсона с электростатическим анализатором позади магнитного, что рассматривается более выигрышным, поскольку большой ионный ток из источника сначала понижается магнитным анализатором и только потом выбранные им ионы подвергаются последовательному анализу по энергиям. Эта конфигурация помогает улучшать изотопическую чувствительность и снижать шумы.
При обычной геометрии геометрии анализаторов условия двойной фокусировки достигаются только в одной точке, там где помещена выходная щель. Разработаны некоторые специальные конфигурации, в которых гарантируется двойная фркусировка в во всей плоскости. Такие конфигурации используются для одновременного определения ионов на фотопластинах или в многоколлекторных приборах. Конфигурация с несколькими коллекторами Фарадея особенно выигрышна для высокопрецезионного анализа изотопных отношений, поскольку все изотопы элемента могут быть измерены одновременно. Следовательно, точность измерения не лимитируется флуктуациями в источнике, зависящими от времени. Точные изотопные измерения на приборах с двойной фокусировкой имеют ряд важнейших приложений, например, для датирования геологических образцов или измерений изотопного состава на ядерных станциях и т.д.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль