Автоматизация измерений, контроля и испытаний
Достоинствами таких ЦИП являются высокая точность и широкий динамический диапазон. К их недостаткам относится низкое быстродействие, обусловленное необходимостью применения контактных ключей для формирования с высокой точностью параметров образцового двухполюсника.
На рис.28 показана структурная схема цифрового моста постоянного тока уравновешивающего типа для измерения активного сопротивле
ния резистора или другого элемента с оммическими потерями.
Измеряемый резистор Rх образцовые резисторы R1, и R2 и преобразователь кода в сопротивление (ПКС) образуют мост, который питается источником постоянного напряжения (ИП). Разбаланс моста фиксируется устройством сравнения (УС). Устройство управления (УУ) анализирует выходной сигнал УС и в зависимости от его знака увеличивает или уменьшает; цифровой код N, выдаваемый на ПКС. Уравновешивание производится до тех пор, пока напряжение в выходной диагонали моста не станет меньше порога чувствительности УС. При этом измеряемое сопротивление
(25)
где КПКС = Rпкс /N— коэффициент преобразования ПКС; Rпкс — сопротивление ПКС.
Как следует из формулы (25), результат измерения (он фиксируется цифровым отсчетным устройством — ЦОУ) не зависит от напряжения питания моста.
Изменение пределов измерения происходит путем изменения отношения сопротивлений резисторов R1 и R2 цепи положительной обратной связи. Точность измерения определяется стабильностью сопротивления образцовых резисторов R1 и R2 и точностью ПКС.
Цифровые мосты постоянного тока обеспечивают погрешность измерения около 0,01% и широко используются для точного измерения активного сопротивления.
Рис.28. Структурная схема цифрового моста постоянного тока уравновешивающего типа
6.2 Мосты постоянного и переменного тока
Для измерений различных величин находят применение измерительные приборы – мосты и компенсаторы, которые строятся на основе метода сравнения с мерой.
Мосты широко используются для измерения сопротивления, индуктивности, емкости, добротности и угла потерь. На основе мостовых схем выпускают приборы для измерения неэлектрических величин (температуры, перемещений и др.) и различные устройства автоматики. Широкое применение мостов объясняется возможностью измерения различных величин.
В зависимости от характера сопротивлений плеч, образующих мост, и рода тока, питающего мост, выделяют мосты постоянного и переменного тока. В зависимости от вида схемы (числа плеч) мосты постоянного тока бывают четырехплечие (одинарные) и шестиплечие (двойные). Мосты выпускаются с ручным и автоматическим уравновешиванием.
Для измерений напряжений и ЭДС постоянного и переменного тока применяют компенсаторы постоянного и переменного тока. Они также применяются для измерения других величин при использовании измерительных преобразователей и косвенного способа измерений. Компенсаторы дают возможность получать результаты с высокой точностью, они обладают высокой чувствительностью. Приборостроительная промышленность выпускает компенсаторы, как с ручным, так и с автоматическим уравновешиванием.
Измерение параметров на переменном токе. Основными методами измерения параметров R, L, С на переменном токе являются мостовые и резонансные. Мостовые методы измерения являются более точными, но могут использоваться только в ограниченной полосе частот. Существует несколько разновидностей мостовых схем: четырехплечие, шестиплечие (двойные), уравновешенные, неуравновешенные и процентные. Управление этими мостами может быть как ручным, так и автоматическим. Наибольшее распространение получили схемы четырехплечих уравновешенных мостов. Обобщенная структурная схема такого моста показа-па на рис.29, а.
Сопротивления четерехплечего моста в общем случае носят комплексный характер:
(26)
Условия равновесия такого моста будут определяться двумя уравнениями:
(27)
(28)
Для выполнения этих условий необходимо наличие в плечах моста двух элементов с регулируемыми параметров. Этими параметрами наиболее удобно сделать активные сопротивления. В качестве элемента, обеспечивающего необходимый фазовый сдвиг, используется эталонный конденсатор емкостью С0 с малыми потерями.
Упрощенная структурная схема четырехплечего уравновешенного моста для измерений активных сопротивлений представлена на рис.29, б. Магнитоэлектрический, электронный или цифровой нуль-индикатор (НИ) включается в диагональ моста, ток в которой в момент измерения должен быть установлен равным нулю. Согласно условию (27) равновесия моста необходимо, чтобы выполнялось равенство RхR4=R2R3,откуда неизвестное сопротивление можно выразить следующей формулой:
(29)
Для достижения равновесия моста достаточно иметь один регулируемый параметр (резистор R4), как показано на рис.29, б.
Пределы измеряемых сопротивлений для подобных мостов составляют от 10 -2 до 10 7 Ом. Погрешности измерения — от сотых долей процента до нескольких процентов в зависимости от диапазона измерения. Наименьшие погрешности лежат в диапазоне от 100 Ом до 100 кОм. При малых измеряемых сопротивлениях вклад в погрешность измерения вносят сопротивления соединительных проводов, при больших — сопротивления утечки.
Представленная на рис.29, б схема может быть создана в цифровом варианте. Для этого регулируемый резистор изготавливается в виде набора ряда сопротивлений, выполненных в соответствии с двоично-десятичным кодом. Сопротивления поочередно включаются в плечо измерительного моста до тех пор, пока схема не уравновесится. Положение ключей характеризует собой код измеряемой величины, поступающий затем в цифровое отсчетное устройство.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем