Развитие младших школьников в процессе обучения математике

Рассмотрим на конкретном примере, как можно реализовать приведенные рекомендации. Для того чтобы подвести учащихся к формулировке переместительного свойства умножения, учитель предлагает им такие задания:

Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить пол

ученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Аналогичное задание учащиеся выполняют с прямоугольником, который разбит на квадраты. В результате получают 9*3=27; 3*9=27 и словесно описывают те сходства и различия, которые существуют между записанными равенствами.

                 
                 
                 

Ученикам предлагается самостоятельная работа: найти значения следующих выражений, заменив умножение сложением:

3*2 4*2 3*6 4*5 5*3 8*4 2*3 2*4 6*3 5*4 3*5 4*8

Выясняется, чем похожи и чем отличаются равенства в каждом столбике. Ответы могут быть такими: «Множители одинаковые, они переставлены», «Произведения одинаковые» или «Множители одинаковые, они переставлены, произведения одинаковые».

Учитель помогает сформулировать свойство с помощью наводящего вопроса: «Если множители переставить, то что можно сказать о произведении?»

Вывод: «Если множители переставить, то произведение не изменится» или «От перестановки множителей значение произведения не изменится».

• Задание 89. Подберите последовательность заданий, которые можно использовать для выполнения индуктивных умозаключений при изучении:

а) правила «Если произведение двух чисел разделить на один множитель, то получим другой»:

б) переместительного свойства сложения;

в) принципа образования натурального ряда чисел (если к числу прибавить единицу, то получим следующее при счете число; если вычесть 1, то получим предыдущее число);

г) взаимосвязей между делимым, делителем и частным;

д) выводов: «сумма двух последовательных чисел есть число нечетное»; «если из последующего числа вычесть предыдущее, то получится I»; «произведение двух последовательных чисел делится на 2»; «если к любому числу прибавить, а затем вычесть из него одно и то же число, то получим первоначальное число».

Опишите работу с этими заданиями, учитывая методические требования к использованию индуктивных рассуждений при изучении нового материала.

Формируя у младших школьников умение обобщать наблюдаемые факты индуктивным способом, полезно предлагать задания, при выполнении которых они могут сделать неверные обобщения.

Рассмотрим несколько таких примеров:

Сравни выражения, найди общее в полученных неравенствах и

сделай соответствующие выводы:

2+3 .2*3 4+5 .4*5 3+4 .3*4 5+6 .5*6

Сравнив данные выражения и отметив закономерности: слева записана сумма, справа произведение двух последовательных чисел; сумма всегда меньше произведения, большинство детей делают вывод: «сумма двух последовательных чисел всегда меньше произведения». Но высказанное обобщение ошибочно, так как не учтены случаи:

0+1 .0*1

1+2 . 1*2

Можно попытаться сделать правильное обобщение, в котором будут учтены определенные условия: «сумма двух последовательных чисел, начиная с числа 2, всегда меньше произведения этих же чисел».

Найди сумму. Сравни ее с каждым слагаемым. Сделай соответствующий вывод.

Слагаемое  

1  

2  

3  

4  

5  

6  

Слагаемое  

4  

4  

4  

4  

4  

4  

Сумма  

           

На основе анализа рассмотренных частных случаев учащиеся приходят к выводу, что: «сумма всегда больше каждого из слагаемых». Но его можно опровергнуть, так как: 1+0=1, 2+0=2. В этих случаях сумма равна одному из слагаемых.

V Проверь, будет ли делиться каждое слагаемое на число 2, и сделай вывод.

(2+4):2=3 (4+4):2=4 (6+2):2=4 (6+8):2=7 (8+10):2=9

Анализируя предложенные частные случаи, дети могут прийти к заключению, что: «если сумма чисел делится на 2, то каждое слагаемое этой суммы делится на 2». Но этот вывод ошибочный, так как его можно опровергнуть: (1+3):2. Здесь сумма делится на 2, каждое слагаемое не делится.

• Задание 90. Используя содержание курса начальной математики, придумайте задания, при выполнении которых ученики могут сделать неверные индуктивные заключения.

Большинство психологов, педагогов и методистов считают, что эмпирическое обобщение, в основе которого лежит действие сравнения, для младших школьников наиболее доступно. Этим, собственно, и обусловлено построение курса математики в начальных классах.

Сравнивая математические объекты или способы действий, ребенок выделяет их внешние общие свойства, которые могут стать содержанием понятия. Тем не менее, ориентир на внешние, доступные для восприятия свойства сравниваемых математических объектов не всегда позволяет раскрыть сущность изучаемого понятия или усвоить общий способ действий. При эмпирическом обобщении учащиеся часто сосредотачиваются на несущественных свойствах объектов и на конкретных ситуациях. Это отрицательно сказывается на формировании понятий и общих способов действий. Например, формируя понятие «больше на», учитель обычно предлагает серию конкретных ситуаций, отличающихся друг от друга лишь числовыми характеристиками. На практике это выглядит так: детям предлагается положить в ряд три красных кружка, под ними положить столько же синих, затем выясняется – как сделать так, чтобы в нижнем ряду кружков стало больше на 2 (добавить 2 кружка). Затем учитель предлагает положить в первый ряд 5 (4,6,7 .) кружков, во второй ряд на 3 (2,5,4 .) больше. Предполагается, что в результате выполнения таких заданий у ребенка сформируется понятие «больше на», которое найдет свое выражение в способе действий: «взять столько же и еще .». Но, как показывает практика, в центре внимания учащихся в этом случае, прежде всего, остаются различные числовые характеристики, а не сам общий способ действия. Действительно, выполнив первое задание, ученик может сделать вывод только о том, как «сделать больше на 2», выполнив следующие задания – «как сделать больше на 3 (на 4, на 5)» и т. д. В итоге, обобщенная словесная формулировка способа действия: «нужно взять столько же и еще» дается учителем, и большинство детей усваивают понятие «больше на» только в результате выполнения однообразных тренировочных упражнений. Поэтому они способны выполнять те или иные рассуждения только в рамках данной конкретной ситуации и на ограниченной области чисел.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы