Урок–исследование как составная часть формирования исследовательского типа мышления учащихся и средство получения новых прочных знаний по математике

Главное таинство урока – исследования – зарождение идеи решения поставленной проблемы.

К какому же типу занятий отнести урок – исследование? Ответ прост - изучению и первичному закреплению новых знаний и способов деятельности. Это урок первого типа. Если результатом урока первого типа будут прочные знания учащихся, то это конечно освободит учителю время для организации подготовки учащихся к

итоговому тестированию.

Развивающая функция обучения математике требует от учителя не простого изложения знаний в определенной системе, а предполагает также учить школьников мыслить, искать и находить ответы на поставленные вопросы, добывать новые знания, опираясь на уже известные. Уместно в связи с этим привести слова французского философа М. Монтеня: «Мозг хорошо устроенный стоит больше, чем мозг хорошо наполненный».

Математика должна рассматриваться не как предмет с набором готовых знаний, а как специфическая интеллектуальная деятельность человека. Обучение же должно в разумной мере проходить в форме повторного открытия, а не простой передачи суммы знаний. Математику надо изучать не столько ради лишних фактов, сколько ради процесса их получения, и тогда математика предстанет как могучее орудие познания и преобразования природы, а не как формальная схема, в которой «неизвестно, о чем говорится». Сейчас в школе обучение в значительной степени строится по формуле:

«Усвоение = Понимание + Запоминание».

Но если мы хотим действительно еще и развивать молодежь, то должны руководствоваться следующей формулой:

«Овладение = Усвоение + Применение знаний на практике».

Познавательные процессы эффективно развиваются лишь при такой организации обучения, при которой школьники включаются в активную поисковую деятельность. Поиск нового составляет основу для развития воли, внимания, памяти, воображения и мышления. Эффективным средством обучения и развития является организация уроков - исследований, цель которых состоит в том, чтобы помочь учащимся самостоятельно открыть новые знания и способы деятельности, углубить и систематизировать изученное.

Урок – исследование:

Тема урока: «Нахождение первообразной логарифмической функции»

( этот урок я комментирую с позиции учителя, чтобы была понятна суть урока – исследования, принцип его построения. С такого урока нельзя начинать проводить уроки – исследования, это урок для уже имеющих опыт учащихся)

Я хотел бы, чтобы изобретатели

дали историю путей, по которым

они дошли до своих открытий.

В тех случаях, когда они

вовсе не сообщают этого, нужно

попробовать отгадать эти пути».

Г. Лейбниц.

Цель урока:

* В процессе урока – исследования создать условия для развития у школьников умений формулировать промежуточные проблемы, предлагать пути их решения.

* Содействовать развитию у детей умений общаться;

* Обеспечить развитие у школьников монологической и диалогической математической речи.

Тип урока: Урок по изучению и первичному закреплению новых знаний и способов деятельности.

Ход урока: Вступительное слово учителя:

Начинать исследование можно по-разному. Всё равно начало почти всегда оказывается весьма несовершенной, нередко безуспешной попыткой. Есть истины, как страны, наиболее удобный путь к которым становится известным лишь после того, как мы испробуем все пути. На пути к истине мы почти всегда совершаем ошибки. Не бойтесь совершать эти ошибки. Предлагайте любые пути, на первый взгляд даже смешные, наука знает немало случаев, когда именно таким образом совершались открытия.

1. Постановка проблемы:

2. Повторение теории по данной проблематике:

Определение:Функция F(x) называется первообразной для функции на заданном промежутке I , если для всех х из этого промежутка

Основное свойство первообразной: Любая первообразная для функции (x) на промежутке I может быть записана в виде F(x)+C, где F(x) - одна из первообразных для функции на промежутке I, а C–произвольная постоянная.

Правила нахождения первообразной:

Ø(1)

Ø(2)

Ø(3)

Ø(4)

Необходимо так же вспомнить правила нахождения производной: нам придется доказывать, что найденная нами функция действительно соответствует определению первообразной, а для доказательства потребуются знания по правилам нахождения производной.

Ø(5)

Ø(6)

Ø(7)

Ø(8)

3. Подбор инструментов для исследования:

Действия (все арифметические, дифференцирование, интегрирование ). Тождества (все известные учащимся, включая формулы …).

Функции (можно перечислить элементарные, но всех конструкций из элементарных функций перечислить невозможно).

Это наши инструментальные ˝ящики˝. Из них мы будем извлекать инструменты и с их помощью добиваться цели.

Процесс исследования:.

Найдем хотя бы одну первообразную, т.е. будем в дальнейших рассуждениях полагать C=0. Учащиеся предложат следующее: Нужно найти тождества типа:

, воздействовать на них инструментом , и если интеграл для функции g(x) (т.е. правой части) найдется – то задача решена. Вспоминаем такие тождества. Знакомо только одно:. Проинтегрировав обе части, убеждаемся, что цели добиться не удалось, нужно искать другое тождество. Известных тождеств, где было бы слагаемым (чтобы его выразить), нет. А наша задача как раз и состоит в том, чтобы в тождестве было слагаемым! Задача усложнилась. Теперь придется такое тождество конструировать, создавая модель. Открываем ящик – функции. Какую из них взять? Пока непонятно. Возьмем в общем виде - . Начнем создавать (используя ящик действия) модель: Первое предложение будет таким:

Страница:  1  2  3 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы