Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
Эта теорема, напоминает теорему Рисса-Торина, но отличается от нее во многих важных отношениях.
Во-первых, здесь скаляры могут быть как вещественными, так и комплексными, в то время как в теореме Рисса-Торина обязательно нужно, чтобы скаляры были комплексными. Во-вторых здесь имеется ограничение p≤q. Наиболее важная особенность состоит в том, что в предпосылках теоремы пространства mg width=31 height=41 src="images/referats/3115/image032.png">и заменены на более широкие пространства и .
Таким образом, теорема Марцинкевича может оказаться применимой в тех случаях, где теорема Рисса-Торина уже не работает.
2. Общие свойства интерполяционных пространств
Пусть A - векторное пространство над полем вещественных или комплексных чисел. Оно называется нормированным векторных пространством, если существует вещественнозначная функция (норма) , определенная на A, удовлетворяющая условием.
1) , причем
2) (λ-скаляр)
3) .
Пусть A и B – два нормированных векторных пространства. Отображение T из A в B называется ограниченным линейным оператором, если
, и .
Ясно, что всякий ограниченный линейный оператор непрерывен.
Пусть A0 и A1 – топологических векторных пространства. Говорят, что
A0 и A1 совместимы, если существует отделимое топологическое векторное пространство U, такое, что A0 и A1, являются подпространствами. В этом случае можно образовать сумму A0 + A1, и пересечение A0∩A1. Сумма состоит из всех aU, представимых в виде a=a0+a1, где a0A, и a1A,
Справедлива следующая лемма
Лемма 2.1. Пусть A0 и A1-совместимые нормированные векторные пространства. Тогда
A0∩A1, есть нормированное векторное пространство с нормой
A0 + A1, также представляет собой нормированное векторное пространство с нормой
При этом если A0 и A1 – полные пространства, то A0∩A1 и A0 + A1 также полны.
Дадим некоторые важные определения:
Категория σ состоит из объектов A,B,C…., и морфизмов R,S,T,…. между объектами и морфизмами определено трехместное отношение T: A↷B.
Если T: A↷B и S: B↷C, то существует морфизм ST, называемый произведением (или композицией) морфизмов S и T, такой, что ST: A↷ C.
Операция взятия произведения морфизмов удовлетворяет закону ассоциативности: T(SR)=(TS)R. далее, для всякого объекта A из σ существует морфизм I=IA, такой, что для любого морфизма T: A↷A TI=IT=T
Через σ1 обозначим категорию всех совместимых пар пространств из σ.
Определение 2.1. Пусть =(A0,A1)-заданная пара из σ1. Пространство A из σ будем называть промежуточным между A0 и A1 (или относительно ), если имеют место непрерывные вложения.
.
Если, кроме, того T: ↷ влечет T: A ↷ A, то A называется интерполяционным пространством между A0 и A1.
Более общим образом, пусть и - две пары из σ1. Тогда два пространства A и B из σ называются интерполяционными относительно и соответственно и T: ↷ влечет T: A↷ B.
Если выполнено
,
В этом случае, говорят, что A и B равномерные интерполяционные пространства.
Определение 2.2 Интерполяционные пространства A и B называются пространствами типа θ (0≤θ≤1), если
В случае с=1 говорят, что A и B - точные интерполяционные пространства типа θ.
3. О норме и спектральном радиусе неотрицательных матриц
Хорошо известно, что проблема нахождения нормы линейного оператора, спектрального радиуса оператора являются трудной проблемой и в конечномерном случае. В то же время, иногда важно не вычисляя нормы оператора знать, как она изменится в случае некоторого преобразования.
В данной работе изучается влияние распределения ненулевых элементов неотрицательной матрицы на норму соответствующего оператора и спектрального радиуса.
Определим пространство как множество всех наборов вида
a=(a1, a2,…, aN)
с нормой
.
Множество Q={(k,l):k,l=1,…,N} назовем решеткой размерности N x N. Любое множество Q0={(ki,lj): , } будет являться подрешеткой размерности r x m.
Спектральный радиус линейного оператора в конечномерном пространстве определяется следующим образом:
r(A)=,
где lk- собственные значения оператора A.
Пусть m ≤ N, d1,…,dm - положительные числа. Через Dm обозначим множество неотрицательных матриц А, ненулевые элементы которых принимают значения d1,…,dm. Через P(A) обозначим множество индексов соответствующих положительным элементам. Пусть AÎDm. Если D={(ki,lj), i=1,…,q, j=1,…,p} подрешетка, содержащая P(A), то для соответствующего оператора А
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах