Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
.
Таким образом, получаем
Из того, что
И
меем
То есть . Следовательно ↪ где соответствующие константы не зависят от N.
Лемма доказана.
Для пары пространств определим интерполяционные пространства аналогично [5] .
Пусть , тогда
где
При q=∞
Лемма 4.4 Пусть , d>1. Тогда
Справедлива следующая
Теорема 4.1 Пусть ≤p0<p1<∞, 1<q0,q1≤∞, M – произвольная сеть. Тогда
↪
где
Доказательство.
Учитывая, что ↪нам достаточно, доказать следующее вложение
↪
Пусть Рассмотрим произвольное представление a=a0+a1, где
тогда
(3)
Так как представление a=a0+a1 произвольно, то из (3) следует
Где Рассматривая норму элемента в пространстве и применяя
лемму 4.4 , получаем:
Теорема доказана.
Теорема 4.2 Пусть 1≤p0<p1<∞, 1<q0,q1≤∞, Тогда имеет место равенство
Это равенство понимается в смысле эквивалентности норм с константами, не зависящими N.
Доказательство. По теореме 4.1 и того, что является обобщением пространств Лоренца нам достаточно доказать следующее вложение:
↩
.
Определим элементы и следующим образом
, тогда .
Заметим что
(4)
где
(5)
где
Тогда
Из (4) и (5) имеем:
Оценим отдельно каждое из слагаемых последнего равенства, используя неравенство Гельдера:
~
где .
Таким образом, получаем, что Аналогично рассмотрим второе слагаемое:
~
~
~
Таким образом, получаем
где c не зависит от .
Теорема доказана.
Теорема 4.3 Пусть - матрица , тогда
~
Причем соответствующие константы не зависят от
Доказательство.
Воспользуемся эквивалентными представлением нормы и неравенством о перестановках, получим
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах