Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
где элемент имеет координаты (l,m).
Теорема доказана. Аналогичные задачи для интегральных операторов были рассмотрены в
работах [1], [5].
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Пусть 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Определим семейство конечномерных пространств:
где невозрастающая перестановка последовательности
. Обозначим через
–множество всех непустых подмножеств из {1,2, .N} Пусть M
, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, множество M назовем сетью.
Определим семейство конечномерных пространств
|e| - количество элементов множества e.
При q=∞ положим
Данные пространства являются конечномерными аналогами сетевых пространств, введенных в [1].
Будем говорить что {AN} ↪ {BN} если существует константа c, такая что для любого
, где c не зависит от
.
Лемма 4.1 Пусть 1 ≤ q <q1≤ ∞, 1 ≤ p ≤ ∞, . Тогда имеет место вложение
↪
то есть
где с не зависит от выбора N.
Доказательство. Пусть
(1)
то есть ↪
Теперь рассмотрим случай, когда 1 ≤ q <q1< ∞, и воспользуемся неравенством (1)
Лемма доказана.
Лемма 4.2 Пусть 1≤p<p1<∞, 1≤q,q1≤∞. Тогда имеем место вложение
↪
Доказательство.
Согласно условию леммы, нам достаточно доказать вложения при p < p1 :
↪
Получаем:
Лемма доказана.
Лемма 4.3 Пусть 1<p<∞, 1≤q≤∞, M= . Тогда
Равенства понимаются с точностью до эквивалентности норм, причем константы не зависят от.
Доказательство. Сначала докажем соотношение:
(2)
Заметим, что
Поэтому
Теперь покажем обратное неравенство. Пусть . Учитывая выбор
имеем.
~
~
Заметим, что
Согласно (2) получаем:
то есть ↪
.
Докажем обратное включение. Пусть Введем следующие обозначения:
Тогда
.
Пусть для определенности
.
Возможны следующие случаи:
.
В первом случае получаем, что
.
Во втором случае , следовательно
. Представим
, тогда
. Здесь и далее
- целая часть числа
.
Получаем
Заметим, что существует такое, что
Положим Тогда
.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах