Некоторые вопросы геометрии Лобачевского на модели Пуанкаре

.

Отсюда получаем

Тогда

=43 src="images/referats/3116/image026.png">

т.е. (ABCD) = (A'B'C'D').

Замечание.

Пусть A'=(A). Имеем

Откуда, перемножив, получаем

и .

Зафиксируем точку В, а r пусть неограниченно возрастает, тогда |AB|=|A'B|, т.е. инверсия относительно „окружности бесконечно большого радиуса" есть симметрия относительно прямой.

2. Аналитическое задание инверсии

Пусть A'=(A), где АO, А. Введём на плоскости декартову прямоугольную систему координат так, чтобы её начало совпало с точкой О.

Пусть x, y - координаты точки А, x', y'-координаты точки А'. Выразим х и у через х' и у'. Имеем А' [OA) и

,

.

Очевидным образом получаем

,

откуда находим

(1)

3. Преобразование окружности и прямой при инверсии

Пусть (O, r) П. Рассмотрим окружность SП. Найдём (S).

Введём на плоскости систему координат хОу. Пусть в этой системе координат окружность S имеет уравнение

A () +Bx+Cy+D=0 (2)

Подвергнем S инверсии . Подставляя в (2) вместо х и у их выражения из (1), получим

A+Bx'+Cy'+D () =0 (3)

Если D=0, т.е. если OS, то (S) - прямая, не проходящая через О.

Если D0, т.е. если OS, то (S) - окружность, не проходящая через точку О.

Итак, доказана.

Теорема 1. Если окружность проходит через центр инверсии, то она преобразуется при инверсии в прямую, не проходящую через центр инверсии; если окружность не проходит через центр инверсии, то она преобразуется в окружность, не проходящую через центр инверсии.

Аналогично доказывается следующая.

Теорема 2. Если прямая проходит через центр инверсии, то она преобразуется при инверсии в себя; если прямая не проходит через центр инверсии, то она преобразуется в окружность, проходящую через центр инверсии.

4. Сохранение углов при инверсии

Определение. Прямые a и b назовём антипараллельными относительно О, если.

Лемма. Если (A) =A' и (B) =B', то прямые АВ и А'В' антипараллельны.

Доказательство получим, рассмотрев ОАВ и ОА'В'.

Теорема 3. Инверсия сохраняет величину углов.

Доказательство. Пусть f и g-кривые, выходящие из точки А, f'=(f), g'=(g) и A'=(A).

Проводим из точки О луч, пересекающий f и g в точках В и С соответственно. Пусть B'=(B), C'=(C). По лемме прямые АВ и А'В', АС и А'С' антипараллельны. Значит, OA'B'=OBA

и OA'C'=OCA, тогда

C'A'B'=OA'B' - OA'C'=OBA-OCA=CAB.

Переходя в равенстве C'A'B'=CAB к пределу при АОС0 (луч ОС приближаем к лучу ОА), получим утверждение теоремы.

Замечание. Доказанное свойство позволяет легко строить образы прямых и окружностей при инверсии.

Пусть, например, дана прямая L и

Проведём луч l с началом О, перпендикулярно L.

Пусть A'=(A).

В силу теорем 2 и 3 заключаем, что L'=(L) - окружность с диаметром ОА'.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы