Некоторые вопросы геометрии Лобачевского на модели Пуанкаре

В точке А к евклидовой полуокружности а проведём

касательную в евклидовом смысле и построим в указанной полуплоскости угол, конгруэнтный . Получим евклидову прямую .

Построим в точке А к прямой пер

пендикуляр до пересечения с f в точке О. С центром в точке О, радиусом ОА проведём полуокружность.

Таким образом, получим неевклидов луч Ab.

Т.к. , то (см. критерий конгруэнтности углов на модели Пуанкаре).

Единственность луча b следует из однозначности приведённых построений.

Покажем далее, что . Это следует из равенства евклидовых величин этих углов.

. Пусть и , , , . Покажем, что , .

Т.к. , то существует неевклидово движение , преобразующее стороны в стороны .

1) Пусть , .Т. к.

,, то , , т.е. и , , откуда , .

2) Пусть , .

Рассмотрим инверсию относительно биссектрисы . Тогда приходим к ситуации 1).

Замечание. На следующих рисунках изображены конгруэнтные между собой треугольники ABC и .

рис. 1

рис. 2

Рассмотрим далее решение некоторых задач на модели.

Задача 1. Построить середину отрезка АВ.

1 случай

- касательная к а из О. Докажем, что . Для этого достаточно рассмотреть

2 случай

Строим евклидову окружность S с диаметром ОВ.

Для доказательства того, что

достаточно рассмотреть

.

Заметим, что т.к.

,

то неевклидова середина отрезка АВ „тяжелее” евклидовой.

Задача 2. Построить биссектрису угла (a,b).

- евклидовы касательные к a и b соответственно в точке А.

- евклидова биссектриса

и .

c= (O, OA) - неевклидова биссектриса .

Доказательство основано на критерии конгруэнтности углов на модели Пуанкаре.

Задача 3. Дана Л-прямая а в точке А, не лежащая на а. Построить Л-прямую b, ортогональную а, и .

1 случай

Достаточно построить и тогда b - неевклидова прямая, проходящая через точки А и , т.к окружность, проходящая через пару инверсных точек, ортогональна окружности инверсии.

2 случай

3 случай

(O, OA) =b

Задача 4. Построить высоту, медиану, биссектрису в треугольнике.

Решение основано на задачах 1-3.

Проверим выполнимость аксиомы непрерывности в формулировке Дедекинда.

IV. Пусть все точки прямой разбиты на два класса так, что выполняются условия:

Оба класса не пустые;

Каждая точка прямой отнесена к одному и только одному из классов;

Каждый класс есть выпуклое множество.

Покажем, что в одном из классов существует граничная точка, т.е. такая точка, которая не лежит между двумя точками одного и того же класса.

Пусть все точки Л-прямой а разбиты на два класса и так, что выполнены условия 1-3 аксиомы Дедекинда.

Рассмотрим евклидову прямую , касающуюся Л-прямой a и параллельную f.

Установим соответствие между точками прямых а и , с помощью радиальных прямых. Очевидно, что это соответствие будет взаимно-однозначным. Поэтому все точки евклидовой прямой разобьются на два класса и так, что будут выполнены условия 1-3 аксиом Дедекинда.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы