Законы больших чисел
Одинаково распределенные случайные величины
Для решения многих практических задач необходимо знать комплекс условий, благодаря которому результат совокупного воздействия большого количества случайных факторов почти не зависит от случая. Данные условия описаны в нескольких теоремах, носящих общее название закона больших чисел, где случайная величина к равна 1 или 0 в зависимости от того, будет ли результатом k-го испытания успех или неудача. Таким образом, Sn является суммой n взаимно независимых случайных величин, каждая из которых принимает значения 1 и 0 с вероятностями р и q.
Простейшая форма закона больших чисел - теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.
Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной.
Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение.
Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения этой случайной величины оказывается практически нормальным законом.
Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.
В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева. Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия.
Неравенство Чебышева. Если случайная величина x имеет дисперсию, то для любого x > 0 справедливо неравенство , где Mx и Dx - математическое ожидание и дисперсия случайной величины x .
Теорема Бернулли. Пусть x n - число успехов в n испытаниях Бернулли и p - вероятность успеха в отдельном испытании. Тогда при любом s > 0 справедливо .
Теорема Ляпунова. Пусть s 1, s 2, …, s n, …– неограниченная последовательность независимых случайных величин с математическими ожиданиями m1, m2, …, mn, … и дисперсиями s 12, s 22, …, s n2… . Обозначим, , ,.
Тогда = Ф(b) - Ф(a) для любых действительных чисел a и b , где Ф(x) - функция распределения нормального закона.
Пусть дана дискретная случайная величина . Рассмотрим зависимость числа успехов Sn от числа испытаний n. При каждом испытании Sn возрастает на 1 или на 0. Это утверждение можно записать в виде:
Sn = 1+…+n. (1.1)
Закон больших чисел. Пусть {к}—последовательность взаимно независимых случайных величин с одинаковыми распределениями. Если математическое ожидание = М(к) существует, то для любого > 0 при n
(1.2)
Иначе говоря, вероятность того, что среднее Sn/n отличается от математического ожидания меньше, чем на произвольно заданное , стремится к единице.
Центральная предельная теорема. Пусть {к}—последовательность взаимно независимых случайных величин с одинаковыми распределениями. Предположим, что и существуют. Пусть Sn = 1+…+n, Тогда для любых фиксированных
Ф () — Ф () (1.3)
Здесь Ф (х) — нормальная функция распределенияю. Эту теорему сформулировал и доказал Линлберг. Ляпунов и другие авторы доказывали ее раньше, при более ограничительных условиях. Необходимо представить себе, что сформулированная выше теорема является только весьма частным случаем гораздо более общей теоремы, которая в свою очередь тесно связана со многими другими предельными теоремами. Отметим, что (1.3) намного сильнее, чем (1.2), так как (1.3) дает оценку для вероятности того, что разность больше, чем . С другой стороны, закон больших чисел (1.2) верен, даже если случайные величины k не имеют конечной дисперсии, так что он применим к более общему случаю, чем центральная предельная теорема (1.3). Проиллюстрируем последние две теоремы примерами.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах