Теорема Бернулли. Закон распределения Пуассона. Критерий Колмогорова

Задание 1. Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи

Теорема утверждает, что при большом числе опытов частота события приближается (точнее - сходится по вероятности) к вероятности этого события. Она устанавливает факт сходимости по вероятности тех или иных случайных величин к постоянным, не случайным величинам.

К

раткая теория:

Теорема Я. Бернулли: при увеличении количества опытов, частота появлений событий сходится по вероятности к вероятности этого события.

где , - сколь угодно малые положительные числа.

Вероятность того, что в n независимых испытаний, в которых вероятность появления события равна р(0<р<1), событие наступит ровно к раз(безразлично, в какой последовательности), равна

, или

где q=1-p

Вероятность того, что в n испытаниях событие наступит:

a) менее к раз;

b) более к раз;

c) не менее к раз;

d) не более к раз; - находятся по формулам:

a) ;

b) ;

c) ;

d) .

Теорема Я. Бернулли утверждает устойчивость частоты при постоянных условиях опыта. Но при изменяющихся условиях опыта аналогичная устойчивость также существует. Теорема, устанавливающая свойство устойчивости частот при переменных условиях опыта, называется теоремой Пуассона.

Схема цепи:

Вычисление вероятности:

Пусть вероятности безотказной работы элементов выглядят следующим образом:

P1 = 0.5

P2 = 0.45

P3 = 0.6

P4 = 0.9

P5 = 0.39

P6 = 0.42

P7 = 0.6

Текст программы:

Program Shiva;

Uses CRT;

Label Start;

Const

k = 7; n = 100000;

Top = 60; Left = 55; Width = 360; Height = 380;

Type Real = Extended;

Var

GrDriver, GrMode : Integer;

R : Array[1 k] Of Record P : Real; Works : Boolean; End;

Fr : Real; j : Byte;

m, i, w : LongInt; Gone : Boolean;

Function Calc : Real;

Var P1, P2, P3, P4 : Real;

Begin

Calc := (R[1].P +R[2].P-R[1].P*R[2].P+R[3].P-R[3].P*

(R[1].P+R[2].P-R[1].P*R[2].P))*R[4].P*

(R[5].P +R[6].P-R[5].P*R[6].P+R[7].P-R[7].P*

(R[5].P+R[6].P-R[5].P*R[6].P));

End;

Procedure Init_Condit;

Var i : Byte;

Begin

For i := 1 To k Do Begin

R[i].Works := False;

If Random <= R[i].P Then R[i].Works := True;

End;

Gone := (R[1].Works Or R[2].Works Or R[3].Works)

And R[4].Works And (R[5].Works Or R[6].Works Or R[7].Works);

End;

Begin

ClrScr; Randomize;

R[1].P := 0.5; R[2].P := 0.45; R[3].P := 0.6; R[4].P := 0.9;

R[5].P := 0.39; R[6].P := 0.42; R[7].P := 0.6;

WriteLn; WriteLn(' Расчетная вероятность: ', Calc:0:3); WriteLn;

WriteLn(' n p*'); WriteLn; m := 0; w := 0;

For j := 1 To 18 Do Begin

For i := 1 To 1000 Do Begin

Inc(w);

Init_Condit;

If Gone Then Inc(m);

End; Fr := m / w;

WriteLn(w : 10, Fr:15:3);

End;

Repeat Until KeyPressed;

End.

Результаты программы:

Расчетная вероятность: 0.688

N,числоопытов  

p*,частота  

1000

0.675

2000

0.678

3000

0.676

4000

0.680

5000

0.681

6000

0.682

7000

0.684

8000

0.683

9000

0.683

10000

0.684

11000

0.685

12000

0.685

13000

0.685

14000

0.686

15000

0.687

16000

0.687

17000

0.687

18000

0.688

Проверка в ручную:

Первый способ:

Вывод: при большом числе опытов частота события приближается (точнее - сходится по вероятности) к вероятности этого события. Следовательно, можно сделать вывод, что теорема Бернулли верна.

Задание 2,3. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы о том, что полученная случайная величина имеет данный закон распределения с помощью критерия Колмогорова.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы