Теорема Бернулли. Закон распределения Пуассона. Критерий Колмогорова
SetColor(DarkGray); Line(X1, 0, X1, Height);
End; SetTextStyle(0, 0,0);
For i := 0 To Ny Do Begin
Y1 := Round(Height-Ly*i*VZoom);
SetColor(7); Line(-5, Y1, Width, Y1); Str(Ly*i:0:2, Txt);
OutTextXY(-40, Y1-4, Txt);
SetColor(DarkGray); Line(0, Y1, Width, Y1);
Y1 := Round(Height-Ly*(i-0.5)*VZoom);
If i > 0 Then Line(0, Y1, Width, Y1);
End;
Set
Color(White); SetFillStyle(8, 7);
For i := 1 To k Do Begin
X1 := Round((i-1)*Lx*HZoom-Lx*HZoom*0.05);
X2 := Round(i*Lx*HZoom-Lx*HZoom*0.95);
Y1 := Round(Height - y[i-1]*VZoom); Y2 := Height;
Bar3D(X1, Y1, X2, Y2, 0, False);
End;
MoveTo(0, Round(Height-f(0)*VZoom));
For i := 1 To d Do
LineTo(Round(i*HZoom), Round(Height-f(i)*VZoom));
Line(0, -30, 0, Height+5); Line(0, -28, 2, -15); Line(0, -28, -2, -15);
Line(-5, Height, Width + 30, Height);
OutTextXY(-36,-30,'f(x)');
OutTextXY(Width+20, Height+5,'x');
Line(Width + 28, Height, Width + 15, Height-2);
Line(Width + 28, Height, Width + 15, Height+2);
Pause; WriteLn;
Kol := Dk * Sqrt(n);
WriteLn(' Критерий Колмогорова:'); WriteLn;
WriteLn(' F(x) F~(x) '); WriteLn;
For i := 0 To d Do WriteLn(al[i]:10:2, ay[i]:14:2);
WriteLn; WriteLn(' Максимум модуля разности: ', Dk:0:2);
WriteLn(' Значение лямбда: ', Kol:2:2);
WriteLn(' Лямбда критическое (а=0.1): ', Lkr:2:2);
Write(' Так как ', Kol:0:2, ' ');
If Kol < Lkr Then Begin
WriteLn('< ', Lkr:0:2, ' то расхождения можно считать случайными.');
WriteLn(' Нет оснований отвергнуть гипотезу о распределении');
Write(' данной совокупности по закону Пуассона.');
End;
If Kol > Lkr Then Begin
WriteLn('> ', Lkr:0:2, ' то расхождения следует считать неслучайными.');
WriteLn(' Нет оснований принять гипотезу о распределении');
Write(' данной совокупности по закону Пуассона.');
End;
Pause;
End.
Результаты работы программы
Смоделирована последовательность случайных чисел (з.Пуассона)
F(x) F~(x)
0.14 0.15
0.41 0.45
0.68 0.71
0.86 0.88
0.95 0.95
0.98 0.98
1.00 0.99
1.00 1.00
1.00 1.00
Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).
D = max | F*(x)- F(x)|
D = 0.04
Далее определяем величину l по формуле:
,
где n – число независимых наблюдений.
Основанием для выбора в качестве меры расхождения величины D является исключительная простота её закона распределения. А.Н. Колмогоров доказал, что, какова бы ни была функция распределения F(x) непрерывной случайной велечины X, при неограниченном возрастании числа независимых наблюдении n вероятность неравенства
стремится к пределу
Значения вероятности , подсчитанные по формуле приведённой выше занесены в таблицу, по данной таблице находим вероятность
P(l) = 0,711.
Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.
Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.
Критерий Колмогорова:
F(x) F~(x)
0.14 0.15
0.41 0.46
0.68 0.71
0.86 0.88
0.95 0.95
0.98 0.98
1.00 0.99
1.00 1.00
1.00 1.00
Список используемой литературы
1. «Теория вероятностей» В.С. Вентцель
2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л.А. Овчаров
3. «Справочник по вероятностным расчётам».
4. «Теория вероятностей и математическая статистика» В.Е. Гмурман
5. «Руководство к решению задач по теории вероятностей и математической статистике» В.Е. Гмурман.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах