Вычисление случайных величин
Задача №1.
Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC:
где S – площадь треугольника ABC.
Определить плотности случайных величин X и Y, математические ожидания
M(X) и M(Y), дисперсии D(X) и D(Y), а также коэффициент корреляции . Являются ли случайные величины X и Y независимыми?
Решение.
Разделим область ABC на две равные части вдоль оси OX, тогда из условия
или
следует, что
Тогда плотность двумерной случайной величины (X,Y):
Вычислим плотность составляющей X:
при ,
откуда плотность составляющей X –
Вычислим плотность составляющей Y:
при ,
при ,
Поэтому плотность составляющей Y –
Найдем условную плотность составляющей X:
при , случайные величины X и Y зависимы.
Найдем математическое ожидание случайной величины X:
Найдем дисперсию случайной величины X:
Найдем среднеквадратическое отклонение случайной величины X:
Найдем математическое ожидание случайной величины Y:
Найдем дисперсию случайной величины Y:
Найдем среднеквадратическое отклонение случайной величины Y:
Найдем математическое ожидание двумерной случайной величины (X,Y):
Тогда ковариация: ,
а значит и коэффициент корреляции
Следовательно, случайные величины X и Y - зависимые, но некоррелированные.
Задача №2
Двумерная случайная величина (X,Y) имеет следующее распределение вероятностей:
Y |
X | |||
3 |
6 |
8 |
9 | |
-0,2 |
0,035 |
0,029 |
0,048 |
0,049 |
0,1 |
0,083 |
0,107 |
0,093 |
0,106 |
0,3 |
0,095 |
0,118 |
0,129 |
0,108 |
Найти коэффициент корреляции между составляющими X и Y.
Решение.
Таблица распределения вероятностей одномерной случайной величины X:
X |
3 |
6 |
8 |
9 |
|
0,213 |
0,254 |
0,270 |
0,263 |
Проверка: + + + = 0,213 + 0,254 + 0,270 + 0,263 = 1.
Таблица распределения вероятностей одномерной случайной величины Y:
Y |
-0,2 |
0,1 |
0,3 |
|
0,161 |
0,389 |
0,450 |
Проверка: + + = 0,161 + 0,389 + 0,450 = 1.
Вычислим числовые характеристики случайных величин X и Y.
1. Математическое ожидание случайной величины X:
2.
Математическое ожидание случайной величины Y:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах