Задачи на экстремум в планиметрии
Замечание 2. Максимумы и минимумы непрерывной функции следуют друг за другом, чередуясь.
Пример 1. Найти все максимумы и минимумы функции
Р е ш е н и е. Данная функция всюду дифференцируема (т. е. всюду имеет конечную производную) f '(х) = 1— х.
1) Решаем уравнение 1— х = 0. Оно имеет единственный корень х = 1.
2)
Производная f '(х) = 1 — х меняет знак при переходе аргумента через значение х = 1. Именно, при х < 1 производная положительна, при х > 1 —отрицательна. Значит, критическое значение х = 1 дает максимум. Других экстремумов у функции нет.
Пример 2. Найти все максимумы и минимумы функции
f(x) = (x - 1)2 (x + 1). (1)
Р е ш е н и е. Данная функция всюду дифференцируема. Имеем:
f '(х) = 2(х — 1) (х + 1)3 + 3 (х— 1)2 (х + 1)2 = (х— 1)(х + 1)2(5х— 1).
1) Решаем уравнение f'(х) = 0. Его корни (расположенные в порядке возрастания) будут:
х1 = — 1, х2 = 1/5; х3 = 1. (2)
2) Представив производную в виде
f(х) = 5 (х + 1)2 (х – 1/5) (х - 1), (3)
исследуем каждое из критических значений.
а) При х < —1 все три двучлена формулы (3) отрицательны, так что слева от х = — 1 имеем:
f '(х) = 5 (-)2(-)(-) = +. (4)
Пусть аргумент перешел через значение х1= — 1, но не дошел до следующего критического значения х2 = 1/5. Тогда двучлен х + 1 стал положителен, а два других двучлена формулы (3) остаются отрицательными, и мы имеем: f '(х) = 5 (+)2 (-)(-) = +. (5)
Сравнив (4) и (5), видим, что при переходе
Рис. 11 через критическое значение х1= -1 производная не меняет знака, оставаясь положительной. Значит, в точке х =-1 экстремума нет; здесь функция f(x) возрастает (рис. 11).
б) Исследуем ближайшее большее критическое значение х2 = 1/5. В достаточной близости слева (т. е. между х1 = — 1 и х2 = 1/5) производная в силу (5) положительна. В достаточной близости справа (между х1 = 1/5 и х2 = +1) второй сомножитель положителен, и мы имеем:
f ' (х) = 5 (+)2(+) (-) = - . (6)
Сравнив (5) и (6), видим, что знак производной при переходе через х2 = 1/5 меняется с плюса на минус [функция f(х) от возрастания переходит к убыванию]. Значит, в точке x = 1/5 функция имеет максимальное значение; оно равно f (1/5) = (1/5 – 1)2 (1/5 + 1) ~ 1,1.
в) Исследуем последнее критическое значение х3 = 1. В достаточной близости слева производная в силу (6) отрицательна. Справа от х3 = 1 имеем:
f '(х) = 1/5 (+)2 (+) (+) = + . (7)
При переходе через х = 1 производная меняет знак с минуса на плюс [функция f(х) переходит от убывания к возрастанию]. Значит, при х = 1 функция имеет минимальное значение; оно равно
f (х) = (1 - 1)2(1 + 1)3 = 0.
П р и м е р 3. Найти все экстремумы функции
Р е ш е н и е. Данная функция дифференцируема при всех положительных и отрицательных значениях х, и мы имеем:
В точке же х = 0 функция f(x) не дифференцируема (ее производная бесконечна). Поэтому (см. замечание 1) имеем два критических значения: x1 = 0 и х2 = 2/5.
При х < 0 имеем:
При 0 < х < 2/5 имеем:
При х > 2/5 имеем:
Значит, в точке х = 0 функция имеет максимальное значение f (0) = 0, а в точке x = 2/5 - минимальное значение
§ 5. Второе достаточное условие максимума и минимума
Когда знак производной вблизи критических точек (§ 4) распознается с трудом, можно пользоваться следующим достаточным условием экстремума.
Т е о р е м а 1. Пусть в точке х = а первая производная f ' (х) обращается в нуль; если при этом вторая производная f " (а) отрицательна, то функция
f (х) имеет в точке х = а максимум, если положительна, то — минимум. В случае f "(а) = 0 см. теорему 2.
Второе условие следующим образом связано с первым. Будем рассматривать f "(х) как производную от f '(х). Соотношение f "(а) < 0 означает, что f '(х) убывает в точке х = а. Атак как f '(а) = 0, то f(х) положительна при х < а и отрицательна при х > а. Значит (§ 3), f(х) имеет максимум при х = а. Аналогично для случая f " (а) > 0.
П р и м е р 1. Найти максимумы и минимумы
Рис. 12 функции f (х) = ½ х4 – х2 + 1
Р е ш е н и е. Решив уравнение f '(х) = 2х3 — 2х = 0,
получаем критические значения хl = —1, х2 = 0, х3 = 1.
Подставив их в выражение второй производной f "(х) = 6х2 — 2 = 2 (Зх2 — 1), находим, что f "(-1)>0, f "(0)<0, f "(1)>0. Значит при х = -1 и х = 1 имеем минимум, при х = 0 - максимум (рис. 12).
Может случиться, что вместе с первой производной обращается в нуль и вторая; может обратиться в нуль и ряд последующих производных. Тогда можно воспользоваться следующим обобщением теоремы 1.
Т е о р е м а 2. Если в точке х = а, где первая производная равна нулю, ближайшая не равная нулю производная имеет четный порядок 2k, то функция f (х) имеет при х = а максимум, когда f (2k)(а) < 0, и минимум, когда f(2k) (а) > 0. Если же ближайшая не равная нулю производная имеет нечетный порядок 2k + 1, то функция f(х) в точке а не имеет экстремума; она возрастает, когда f (2k + 1) (а) > 0, и убывает, когда f (2k + 1) (а) < 0.
З а м е ч а н и е. Теоретически не исключено, что у функции f (х) (не являющейся постоянной величиной) все производные в точке х = а будут равняться нулю. Однако практического значения этот случай не имеет.
П р и м е р 2. Найти максимумы и минимумы функции f (х) = sin Зх - 3 sin х.
Р е ш е н и е. Имеем: f '(х) = 3 cos Зх — 3 cos х. Решая уравнение 3 cos Зх — 3 cos х = 0, найдем: х = k π/2, где k— любое целое число.
Так как данная функция имеет период 2π, то достаточно исследовать четыре корня: х1 = 0, х2 = π/2, х3 = π, х4 = 3π/2
Берем вторую производную f "(х) = — 9 sin Зх + 3 sin х. Подставляя критические значения х1, х2, х3, х4, находим:
f "(0) = 0. f "( π/2) = 12,
f "(π) = 0. f "( 3π/2) = - 12.
В точке х2 = π/2 ближайшая не равная нулю производная имеет второй (четный) порядок, причем f " (π/2) > 0. Значит, при х = π/2 имеем минимум. Аналогично заключаем, что при х = 3π/2 имеем максимум ибо f "(3π/2) < 0
Экстремальные значения будут:
f (π/2) = — 1 — 3= - 4 (минимум),
f (3π/2) = sin 9π/2 - 3 sin 3π/2 = 1 - (- 3) = 4 (максимум).
Чтобы исследовать критические значения х1 = 0 и х3 = π, найдем третью производную f '" (х) = — 27 cos Зх + 3 cos х;.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах