Афинные преобразования на плоскости
X
Рис. 10
Решение сформулированной задачи разбивается на несколько шагов. Опишем последовательно каждый из них.
1-й шаг. Перенос на вектор –А (-a, -b, -c) при помощи ма
трицы
|
|
-a -b -c 1
В результате этого преноса мы добиваемся того, чтобы прямая L проходила через начало координат.
2-й шаг. Совмещение оси аппликат-с прямой L двумя поворотами вокруг оси абсцисс и оси ординат.
1-й поворот – вокруг оси абсцисс на угол (подлежащий определению). Чтобы найти этот угол, рассмотрим ортогональную проекцию L’ исходной прямой L на плоскость X = 0 (рис. 11).
|
|
Y
0
Рис. 11
Направляющий вектор прямой L’ определяется просто – он равен
(0, m, n).
Отсюда сразу же вытекает, что
cos n / d, sin = m / d, (4.10)
где
d = m2 + n2 (4.11)
Соответствующая матрица вращения имеет следующий вид:
1 0 0 0
|
|
0 -m/d n/d 0
0 0 0 1
Под действием преобразования, описываемого этой матрицей, координаты вектора (l, m, n) изменятся. Подсчитав их, в результате получим
(l, m, n, 1)[ Rx ] = (l, 0, d, 1). (4.13)
2-й поворот вокруг оси оси ординат на угол , определяемый соотношениями
сos = l, sin = -d (4.14)
Cоответствующая матрица вращения записывается в следующем виде:
ld
|
|
-dl
3-й шаг. Вращение вокруг прямой L на заданный угол
Так ка теперь прямая L совпадает с осью аппликат, то соответствующая матрица имеет следующий вид:
|
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах