Афинные преобразования на плоскости
Формулы (2.1) и (2.2) можно рассматривать двояко: либо сохраняется точка и изменяется координатная система (рис. 2) – в этом случае произвольная точка М остается той же, изменяются лишь ее координаты (х, у) | (х*, y*), либо изменяется точка и сохраняется координатная система (рис. 3) – в этом случае формулы (2.1) и (2.2) задают отображение, переводящее произвольную точку М (х, у) в точку М* (х*
, у*), координаты которой определены в той же координатной системе.
X*
|
|
|
|
Рис. 2
|
|
|
|
Рис. 3
В дальнейшем, формулы (2.1) и (2.2) будут рассматриваться как правило, согласно которому в заданной системе прямолинейных координат преобразуются точки плоскости.
В аффинных преобразованиях плоскости особую роль играют несколько вжных частных случаев, имеющих хорошо прослеживаемыегеометрические характеристики. При исследовании геометрического смысла числовых коэффицентов в формулах (2.1) и (2.2) для этих случаев удобно считать, что заданная система координат является прямоугольной декартовой.
1. Поворот вокруг начальной точки на угол (рис. 4) описывается формулами:
х* = x cosy sin
y* = x siny cos
2. Растяжение (сжатие) вдоль координатных осей можно задать так:
x* = x, (2.5)
y* = y, (2.6)
Растяжение (сжатие) вдоль оси абсцисс обеспечивается при условии, что На рис. 5
1. Отражение (относительно оси абсцисс) (рис. 6) задается при помощи формул:
x* = x, (2.8)
y* = -y. (2.9)
2. На рис. 7 вектор переноса ММ* имеет координаты . Перенос обеспечивает соотношения:
x* = x +
y* = y +
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах