Количественная мера информации
ЦЕЛЬ РАБОТЫ: экспериментальное изучение количественных аспектов информации.
ЛАБОРАТОРНОЕ ЗАДАНИЕ
1. Определить количество информации (по Хартли), содержащееся в заданном сообщении, при условии, что значениями являются буквы кириллицы.
«Фамилия Имя Отчество» завершил ежегодный съезд эрудированных школьников, мечтающих глубоко проникнуть в тайны физических явлений и химически
х реакций
2. Построить таблицу распределения частот символов, характерные для заданного сообщения. Производится так называемая частотная селекция, текст сообщения анализируется как поток символов и высчитывается частота встречаемости каждого символа. Сравнить с имеющимися данными в табл 1.
3. На основании полученных данных определить среднее и полное количество информации, содержащееся в заданном сообщении
4. Оценить избыточность сообщения.
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Количество информации по Хартли и Шеннону
Понятие количество информации отождествляется с понятием информация. Эти два понятия являются синонимами. Мера информации должна монотонно возрастать с увеличением длительности сообщения (сигнала), которую естественно измерять числом символов в дискретном сообщении и временем передачи в непрерывном случае. Кроме того, на содержание количества информации должны влиять и статистические характеристики, так как сигнал должен рассматриваться как случайный процесс.
При этом наложено ряд ограничений:
1. Рассматриваются только дискретные сообщения.
2. Множество различных сообщений конечно.
3. Символы, составляющие сообщения равновероятны и независимы.
Хартли впервые предложил в качестве меры количества информации принять логарифм числа возможных последовательностей символов.
I=log mk=log N (1)
К.Шеннон попытался снять те ограничения, которые наложил Хартли. На самом деле в рассмотренном выше случае равной вероятности и независимости символов при любом k все возможные сообщения оказываются также равновероятными, вероятность каждого из таких сообщений равна P=1/N. Тогда количество информации можно выразить через вероятности появления сообщений I=-log P.
В силу статистической независимости символов, вероятность сообщения длиной в k символов равна
Если i-й символ повторяется в данном сообщении ki раз, то
так как при повторении i символа ki раз k уменьшается до m. Из теории вероятностей известно, что, при достаточно длинных сообщениях (большое число символов k) ki≈k·pi и тогда вероятность сообщений будет равняться
Тогда окончательно получим
(2)
Данное выражение называется формулой Шеннона для определения количества информации.
Формула Шеннона для количества информации на отдельный символ сообщения совпадает с энтропией. Тогда количество информации сообщения состоящего из k символов будет равняться I=k·H
Количество информации, как мера снятой неопределенности
При передаче сообщений, о какой либо системе происходит уменьшение неопределенности. Если о системе все известно, то нет смысла посылать сообщение. Количество информации измеряют уменьшением энтропии.
Количество информации, приобретаемое при полном выяснении состояния некоторой физической системы, равно энтропии этой системы:
Количество информации I - есть осредненное значение логарифма вероятности состояния. Тогда каждое отдельное слагаемое -log pi необходимо рассматривать как частную информацию, получаемую от отдельного сообщения, то есть
Избыточность информации
Если бы сообщения передавались с помощью равновероятных букв алфавита и между собой статистически независимых, то энтропия таких сообщений была бы максимальной. На самом деле реальные сообщения строятся из не равновероятных букв алфавита с наличием статистических связей между буквами. Поэтому энтропия реальных сообщений -Hр, оказывается много меньше оптимальных сообщений - Hо. Допустим, нужно передать сообщение, содержащее количество информации, равное I. Источнику, обладающему энтропией на букву, равной Hр, придется затратить некоторое число nр, то есть
Если энтропия источника была бы Н0, то пришлось бы затратить меньше букв на передачу этого же количества информации
I= n0H0
Таким образом, часть букв nр-nо являются как бы лишними, избыточными. Мера удлинения реальных сообщений по сравнению с оптимально закодированными и представляет собой избыточность D.
(3)
Но наличие избыточности нельзя рассматривать как признак несовершенства источника сообщений. Наличие избыточности способствует повышению помехоустойчивости сообщений. Высокая избыточность естественных языков обеспечивает надежное общение между людьми.
Частотные характеристики текстовых сообщений
Важными характеристиками текста являются повторяемость букв, пар букв (биграмм) и вообще m-ок (m-грамм), сочетаемость букв друг с другом, чередование гласных и согласных и некоторые другие. Замечательно, что эти характеристики являются достаточно устойчивыми.
Идея состоит в подсчете чисел вхождений каждой nm возможных m-грамм в достаточно длинных открытых текстах T=t1t2…tl, составленных из букв алфавита {a1, a2, ., an}. При этом просматриваются подряд идущие m-граммы текста
t1t2 .tm, t2t3 . tm+1, ., ti-m+1tl-m+2 .tl.
Если – число появлений m-граммы ai1ai2 .aim в тексте T, а L общее число подсчитанных m-грамм, то опыт показывает, что при достаточно больших L частоты
для данной m-граммы мало отличаются друг от друга.
В силу этого, относительную частоту считают приближением вероятности P (ai1ai2 .aim) появления данной m-граммы в случайно выбранном месте текста (такой подход принят при статистическом определении вероятности).
Для русского языка частоты (в порядке убывания) знаков алфавита, в котором отождествлены E c Ё, Ь с Ъ, а также имеется знак пробела (-) между словами, приведены в таблице 1.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности