Конструирование ходового механизма экскаватора

PV=PVI+PVI’

Мощности на рабочих органах распределяются равномерно:

PVI=PVI’=25,41 кВт.

PVII=PVI ∙ η = 25,41 ∙ 0,98 = 24,9 кВт.

Находим общий КПД передачи

ηпер = PVII / PI = 24,9/54 = 0,46

4. Определяем крутящие моменты на валах передачи.

,

,

5. Полученные значения частот вращения, мощности и крутящих моментов на валах сводим в таблицу 3.

Таблица 3

№ вала

I

II

III

IV

V

VI

VII

n, мин-1

1280

1280

225,7

42,1

10,2

10,2

3,8

Р, кВт

54

54

52,92

51,86

50,82

25,41

24,9

T, Н·м

403

403

2239,3

11762,6

47550,3

23780,7

62224,6

По полученным данным строим диаграммы частот вращения, мощности и крутящих моментов, показанные на рис. 2.

6. Проверочный расчет активных поверхностей зубьев на контактную выносливость.

Расчет проводим для пары 5 – 6 зацепляющихся колес. Рассматриваемая пара прямозубая. Величина действующих контактных напряжений для цилиндрических зубчатых колес определяется по формуле

(2.5)

Коэффициент, учитывающий форму сопряженных поверхностей зубьев

ZH = 1,77cosβ, для прямозубых колес ZH = 1,77.

Коэффициент, который учитывает механические свойства материала зубчатых колес:

ZM = 275 МПа.

Коэффициент, который учитывает суммарную длину контактных линий

,

где коэффициент торцевого перекрытия

коэффициент, учитывающий колебание суммарной длины контактной линии, для прямозубых передач .

Рис. 2 Диаграммы частот вращения, мощности и крутящих моментов

Расчетная величина удельной окружной нагрузки

,

где Т1 – крутящий момент на ведущем валу рассчитываемой пары,

Т1 = ТIV = 11762,6 Н·м;

bw – рабочая ширина зубчатых колес, которая определяется по формуле

где аw – межосевое расстояние, аw = 820 мм;

ψba – коэффициент ширины венца зубчатого колеса относительно межосевого расстояния, назначают в зависимости от твердости поверхностей и расположения колес относительно опор.

Принимаем ψba = 0,315, тогда bw = 0,315∙820 = 258 мм

КНβ – коэффициент концентрации нагрузки определяется в зависимости от отношения bw/d5 = 258/320 = 0,81 и твердости рабочих поверхностей зубьев; при НВ < 350 принимаем КНβ = 1,07.

– коэффициент динамической нагрузки, определяется в зависимости от окружной скорости, твердости поверхностей зубьев и степени точности. Выбираем степень точности 7, что соответствует передачам общего машиностроения. Окружная скорость

.

В соответствии с этим для НВ < 350 находим = 1,05. В соответствии с этим будем иметь

.

Определяем действительное контактное напряжение по формуле (2.5)

Допускаемая величина контактных напряжений для сталей при НВ ≤ 350 (подвергаемых нормализации или улучшению):

(2.6)

где SH = 1,1 .1,2 – коэффициент безопасности.

С формулы (2.6) определим необходимую твердость поверхности зубьев, полагая , получим

.

Примем для колеса НВк = 220, а для шестерни

НВш = 220 + (10…15) = 230.

Выбираем материал сталь 45, улучшение.

7. Проверочный расчет по напряжениям изгиба.

Для цилиндрических колес:

(2.7)

где YF – коэффициент, зависящий от формы зуба, определяется в зависимости от эквивалентного числа зубьев

где β – угол наклона зубьев, для прямозубых колес Zv = Z.

Для шестерни 5 Z5 = 16, YF1 = 4,25; для колеса Z6 = 66, YF2 = 3,18.

Коэффициент учитывающий перекрытие зуба , для прямозубых колес .

Коэффициент, учитывающий наклон зуба .

Модуль зубьев m = m5,6 = 20 мм.

Расчетная окружная нагрузка

= 1,12;

для колеса 5 – ψbd = bw/d5 = 258/320 = 0,81, = 1,07;

для колеса 6 – ψbd = bw/d6 = 258/1320 = 0,2, = 1,02.

Тогда окружная нагрузка на колесе 5 будет равна

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы