Необходимость переработки медного концентрата

Содержание

Введение . 2

1. Выбор и обоснование технологической схемы . 3

2. Описание технологического процесса 4

3. Расчет материального баланса плавки 10

3.1. Расчет рационального состава медного сырья . 10

3.2. Обжиг медных концентратов в кипящем слое 11

3.3. Расчет материального баланса плавки обожженного концентрата 14

3.3.1. Расчет десульфуризации и состав

а штейна 14

3.3.2. Расчет количество флюсов для ведения плавки на заданном составе шлаков 16

4. Расчет теплового баланса плавки 19

4.1. Расчет горения природного газа . 19

4.2. Расход природного газа и тепловой баланс отражательной плавки огарка 20

5. Конвертирование штейнов . 24

6. Рафинирование меди . 26

6.1 Материальный баланс огневого рафинирования меди 26

6.2 Электролиз меди . 27

7. Расчет сквозного извлечения меди . 29

Заключение 30

Список литературы 31

Введение

Развитие металлургии меди в последние годы характеризуется повышением комплексности использования сырья, возрастающими масштабами применения кислорода, создание автоматизированных непрерывных производств.

Основное количество меди получают по стандартной пирометаллургической схеме плавка – конвертирование – рафинирование, на долю гидометаллургического способа приходится 12-16%.

В последние годы в ряде стран возросло внимание к гидрометаллургическим способам извлечения меди из потерянного и забалансового сырья.

Смешанные руды перерабатывают по схеме выщелачивания – цементация – флотация.

Проводятся изыскания гидрометаллургической переработки сульфидных медь содержащих материалов с использованием автоклавного способа, солевого выщелачивания, сульфатезации.

Значительные успехи достигнуты по повышению комплексности использования сырья за счет расширения ассортимента выпускаемой продукции, организации пылеулавливания, более полного использования серосодержащих газов, а также использования вторичных энергоресурсов.

Полученные достижения во многом связаны с широким внедрением в металлургию кислорода и природного газа.

В настоящее время при производстве меди извлекается из сырья более 15 компонентов и производится более 20 наименований продукции [1].

1. Выбор и обоснование технологической схемы

Наиболее распространенная технологическая схема переработки медных руд и концентратов обязательно включает плавку на штейн, и последующее его конвертирование. В ряде случаев перед плавкой на штейн проводят окислительный обжиг.

Данный концентрат содержит 23% меди, т.е. является бедным и его предварительно подвергают обжигу.

Для плавки на штейн выбираем отражательную печь, т.к. она является надежным, хорошо освоенным процессом, легко управляется и пригодая для переработки сырья в широком диапазоне его составов.

Полученный в результате плавки штейн направляется на конвертирование. Полученная после конвертирования черновая медь подвергается огневому, а затем электролитическому рафинированию [3]. лавки на штейн выбираем отражательную печь, т.к. жигу.

2. Описание технологического процесса

Обжигом называют пирометаллургический процесс, проводимый в интервале температур 600-1200 0С с целью изменения химического и фазового состава перерабатываемого сырья.

Окислительный обжиг применяют подготовительной обработки сульфидных материалов перед плавкой с целью частичного или полного перевода сульфидов в оксиды.

Основным назначением окислительного обжига медных концентратов перед плавкой на штейн является частичное окисление сульфида железа и перевод его в оксидную форму для того, чтобы при последующей плавки огарка больше железа перешло в шлак. Тогда штейны будут получены с большим содержанием меди. Конечный состав штейна при этом определяется тем, сколько серы было удалено при обжиге. Обычно степень десульфуризации при обжиге составляет 70-75%.

Окисление сульфидов при обжиге осуществляется при повышенных температурах (700-900 0С). Необходимое для процесса обжига теплота получается за счет экзотермических реакции окисления сульфидов.

Получающиеся в процессе обжига газы содержат 6-12% SО2, что позволяет до 70% серы исходного концентрата использовать для производства серной кислоты.

В настоящее время для обжига медных концентратов используют преимущественно печи кипящего слоя.

Характерной особенностью процессов, протекающих в кипящем слое является то, что каждая частица шихты со всех сторон омывается газами, благодаря чему эффективно используется огромная активная поверхность концентрата. Хороший контакт сульфидных частиц с газами обуславливают высокую скорость протекания реакций, а следовательно и высокую удельную производительность печи.

Высокая скорость протекания процесса обуславливает практически полное использование кислорода. Это в свою очередь является причиной получения богатых по содержанию SО2 газов.

Для регулирования температуры необходимо отводить тепло из слоя с помощью кессонов.

Продувание воздуха через слой мелких материалов неизбежно связано со значительным выносом пыли. Поэтому печи КС оборудуют мощной системой пылеулавливания. Пыль является готовым продуктом и объединяется с огарком.

Переработка хорошо термически подготовленной, тщательно перемешанной шихты приводит к существенному увеличению удельного проплава отражательных печей и снижению расхода топлива. Таким образом, включение в технологическую схему процесса обжига позволяет не только управлять составом штейна, уменьшить выбросы сернистого ангидрида, снизить затраты на конвертирование, но и делает более экономичной саму отражательную плавку.

Большая газонасыщенность горячего огарка делает его текучим и сильно пылящим при перегрузках. Возникает задача герметизации загрузки и уменьшения пылевыноса из отражательных печей.

Поверхность ванны при плавке огарка в большей своей части покрыта слоем шихты. Поступающая на поверхность ванны теплота воспринимается в основном шихтой. При загрузке огарка большими порциями из-за плохой его теплопроводности первоначально плавятся и перегреваются только поверхностные слои шихты. При загрузке огарка малыми порциями на поверхность шлака нагрев его осуществляется частично за счет теплоты, аккумулированной расплавом. При этом в поверхностном слое ванны формируется шлаковый расплав, отвечающий среднему их составу в печи. Таким образом, плавление огарка при загрузке небольшими порциями протекает в более благоприятных условиях.

При плавке огарка в газовую фазу переходит незначительное количество серы. В тоже время реакция взаимодействия высших оксидов железа и ферритов с сульфидами получает значительное развитие.

При плавке огарка основное количество магнетита поступает с шихтой и восстанавливается на поверхности расплава, где температура более высокая. Это обуславливает высокую степень восстановления магнетита.

Включение в технологическую схему процесса обжига существенно влияет на поведение и распределение ценных спутников. Чем больше степень десульфуризации при обжиге и чем более богатым получается штейн, тем больше цинка переходит в шлак.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы