Необходимость переработки медного концентрата

Подавляющая часть отражательных печей отапливается мазутом и природным газом или их смесью.

Сущность отражательной плавки заключается в том, что шихта плавится за счет тепла от сжигания углеродистого топлива в газовом пространстве над ванной расплава в печи с горизонтально расположенным рабочим пространством (рисунок 1).

Шихту при этом загружают на ванну или на откосы вдоль боковых стен

печи. Раскаленные топочные газы, проходя над поверхностью ванны и шихты, нагревают их, а также стены и свод, и покидают печь, имея еще сравнительно высокую температуру.

Теплопередача в печи осуществляется в основном за счет лучеиспускания от раскаленных стен, свода и продуктов сгорания.

Конструктивно отражательная печь состоит из фундамента, стен, пода, свода, газохода, металлического каркаса, устройств для загрузки шихты и выпуска продуктов плавки, горелок для сжигания топлива.

Стены печей выкладывают из хромомагнезитового кирпича непосредственно на фундаменте. В верхней части печи они имеют толщину 0,5-0,6 м, а у лещади 0,75-1 м. При плавке сырой шихты вдоль боковых стен печи образуются устойчивые шихтовые откосы, которые защищают огнеупорную кладку от быстрого разрушения.

Отражательные печи являются пламенными. Воздух для вдувания, распыления и сжигания топлива обогащают кислородом до 23-28% иногда подогревают до 200-400 0С.

Штейн, полученный в результате плавки подвергают конвертированию.

Конвертирование осуществляют продувкой штейна воздухом в горизонтальном конвертере. Перерабатываемые штейны состоят из сульфидов меди и железа. Вследствие экзотермичности основных реакции конвертирование не требует затрат топлива.

Процесс конвертирования идет в два этапа. Процесс начинается с окисления сульфида железа по реакции

2FeS + 3O2 + SiO2 = FeSiO4 + SO2 + Q

Пока в расплаве имеется достаточное количество железа, сульфида меди практически не окисляется, поскольку равновесие реакции

Cu2O + FeS = Cu2S + FeO

Нацело сдвинуто вправо вследствие более высокого сродства железа к кислороду и меди к сере. Таким образом, в первом периоде конвертирования происходит селективное окисление сульфида железа. В фурменной зоне вследствие относительного избытка кислорода окисление FeS протекает по схеме

FeS => FeO => Fe3О4

В конечном итоге при глубоком окислении все железо может быть перекислено до магнетита, который при температурах конвертирования находится в твердом состоянии. При перемешивании расплава воздухом будет образовываться однородная гетерогенная масса, состоящая из магнетита и оставшихся сульфидов.

Для отделения образующихся оксидов железа от сульфидов необходимо их конвертировать не в твердом а в жидком продукте и добиваться возможно меньшего переокисления железа до магнетита и получение его в основном в виде FeO по реакции:

2FeS + 3O2 = 2FeO + 2SO2 + Q

С этой целью для образования железосиликатного расплава в первом периоде конвертирования в конвертер подают кварц. При растворении вюстита в шлаке снижается его активность и тем в большей степени, чем больше концентрация SiO2 в шлаке.

В первый период конвертирования происходит постепенное накопление в конвертере обогащенной медью сульфидной массы. В связи с этим после каждой заливки штейна и его частичной продувки из конвертера сливают шлак и заливают дополнительную порцию штейна. Затем вновь проводят продувку.

Первый период конвертирования заканчивается холостой продувкой (без заливки штейна)., целью которой является практически полное окисление сульфида железа из обогащенной медью сульфидной массы и получение белого штейна, представляющего собой почти чистый сульфид меди CuS.

Химизм второго периода конвертирования, имеющего своей целью получение черновой меди, может быть выражен реакцией.

Cu2S + O2 = 2Cu + SO2

Которую часто изображают как последовательное протекание двух процессов

2Cu2S + 3O2 = 2Cu2O + SO2

Cu2S + 2Cu2O = 6 Cu + SO2

Процесс конвертирования в горизонтальных конвертерах является периодическим.

Рафинирование черновой меди от примесей по экономическим соображениям проводят в две стадии – сначала методом огневого рафинирования, затем электрохимическим методом.

Цель огневого рафинирования – подготовить медь к электролитическому рафинированию путем удалении из него основного количества примесей.

При электролитическом рафинировании решаются две задачи – глубокое рафинирование меди от примесей, что обеспечивает ее высокую электропроводност, и попутно извлечение ценных золота, серебра и селена [3].

3. Расчет материального баланса плавки

3.1. Расчет рационального состава медного сырья

Состав медного сырья,%: 23,0 Cu, 25,5 Fe, 33,0 S, 0,5 CaO, 0,5 MgO, 2,0 SiO2,5,2 Al2O3,10,3 прочие.

По минералогическому составу медь и железо находится в виде CuFeS2, остальное железо в виде FeS2.

Расчет ведем на 100 кг сырья.

Рассчитаем содержание CuFeS2

63,6 кг Cu входят в 183,4 кг CuFeS2

23 кг Cu входят в х кг CuFeS2

Х = 66,32 кг

Зная количество и состав халькопирита, найдем сколько серы и железа связано в халькопирите

183,4 кг CuFeS2 содержат 64 кг S

66,32 кг CuFeS2 содержат х кг S

Х = 23,14 кг

Количество железа в халькопирите

183,4 кг CuFeS2 содержат 64 кг Fe

66,32 кг CuFeS2 содержат х кг Fe

Х = 20,18 кг

Количество железа в пирите

25,5 – 20,18 = 5,32 кг

С этим количеством железа связано серы

55,8 кг Fe – 64 кг S

5,32 кг Fe – х кг S

Х = 6,10 кг

Количество пирита

5,32 + 6,10 = 11,42 кг

Остальная серы находится в элементарном состоянии

33 – 23,14 – 6,10 = 3,76 кг

По данным расчета составляем таблицу 1 рационального состава медного сырья.

Таблица 1 - Рациональный состав медного сырья, % CuFeS2

Минералы

Cu

Fe

S

SiO2

CaO

MgO

Al2O3

прочие

всего

CuFeS2

23

20,18

23,14

         

66,32

FeS2

 

5,32

6,10

         

11,42

S2

   

3,76

         

3,76

Пустая порода

     

2,0

0,5

0,5

5,2

10,3

18,5

всего

23

25,5

33,0

2,0

0,5

0,5

5,2

10,3

100

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы