Необходимость переработки медного концентрата
Подавляющая часть отражательных печей отапливается мазутом и природным газом или их смесью.
Сущность отражательной плавки заключается в том, что шихта плавится за счет тепла от сжигания углеродистого топлива в газовом пространстве над ванной расплава в печи с горизонтально расположенным рабочим пространством (рисунок 1).
Шихту при этом загружают на ванну или на откосы вдоль боковых стен
печи. Раскаленные топочные газы, проходя над поверхностью ванны и шихты, нагревают их, а также стены и свод, и покидают печь, имея еще сравнительно высокую температуру.
Теплопередача в печи осуществляется в основном за счет лучеиспускания от раскаленных стен, свода и продуктов сгорания.
Конструктивно отражательная печь состоит из фундамента, стен, пода, свода, газохода, металлического каркаса, устройств для загрузки шихты и выпуска продуктов плавки, горелок для сжигания топлива.
Стены печей выкладывают из хромомагнезитового кирпича непосредственно на фундаменте. В верхней части печи они имеют толщину 0,5-0,6 м, а у лещади 0,75-1 м. При плавке сырой шихты вдоль боковых стен печи образуются устойчивые шихтовые откосы, которые защищают огнеупорную кладку от быстрого разрушения.
Отражательные печи являются пламенными. Воздух для вдувания, распыления и сжигания топлива обогащают кислородом до 23-28% иногда подогревают до 200-400 0С.
Штейн, полученный в результате плавки подвергают конвертированию.
Конвертирование осуществляют продувкой штейна воздухом в горизонтальном конвертере. Перерабатываемые штейны состоят из сульфидов меди и железа. Вследствие экзотермичности основных реакции конвертирование не требует затрат топлива.
Процесс конвертирования идет в два этапа. Процесс начинается с окисления сульфида железа по реакции
2FeS + 3O2 + SiO2 = FeSiO4 + SO2 + Q
Пока в расплаве имеется достаточное количество железа, сульфида меди практически не окисляется, поскольку равновесие реакции
Cu2O + FeS = Cu2S + FeO
Нацело сдвинуто вправо вследствие более высокого сродства железа к кислороду и меди к сере. Таким образом, в первом периоде конвертирования происходит селективное окисление сульфида железа. В фурменной зоне вследствие относительного избытка кислорода окисление FeS протекает по схеме
FeS => FeO => Fe3О4
В конечном итоге при глубоком окислении все железо может быть перекислено до магнетита, который при температурах конвертирования находится в твердом состоянии. При перемешивании расплава воздухом будет образовываться однородная гетерогенная масса, состоящая из магнетита и оставшихся сульфидов.
Для отделения образующихся оксидов железа от сульфидов необходимо их конвертировать не в твердом а в жидком продукте и добиваться возможно меньшего переокисления железа до магнетита и получение его в основном в виде FeO по реакции:
2FeS + 3O2 = 2FeO + 2SO2 + Q
С этой целью для образования железосиликатного расплава в первом периоде конвертирования в конвертер подают кварц. При растворении вюстита в шлаке снижается его активность и тем в большей степени, чем больше концентрация SiO2 в шлаке.
В первый период конвертирования происходит постепенное накопление в конвертере обогащенной медью сульфидной массы. В связи с этим после каждой заливки штейна и его частичной продувки из конвертера сливают шлак и заливают дополнительную порцию штейна. Затем вновь проводят продувку.
Первый период конвертирования заканчивается холостой продувкой (без заливки штейна)., целью которой является практически полное окисление сульфида железа из обогащенной медью сульфидной массы и получение белого штейна, представляющего собой почти чистый сульфид меди CuS.
Химизм второго периода конвертирования, имеющего своей целью получение черновой меди, может быть выражен реакцией.
Cu2S + O2 = 2Cu + SO2
Которую часто изображают как последовательное протекание двух процессов
2Cu2S + 3O2 = 2Cu2O + SO2
Cu2S + 2Cu2O = 6 Cu + SO2
Процесс конвертирования в горизонтальных конвертерах является периодическим.
Рафинирование черновой меди от примесей по экономическим соображениям проводят в две стадии – сначала методом огневого рафинирования, затем электрохимическим методом.
Цель огневого рафинирования – подготовить медь к электролитическому рафинированию путем удалении из него основного количества примесей.
При электролитическом рафинировании решаются две задачи – глубокое рафинирование меди от примесей, что обеспечивает ее высокую электропроводност, и попутно извлечение ценных золота, серебра и селена [3].
3. Расчет материального баланса плавки
3.1. Расчет рационального состава медного сырья
Состав медного сырья,%: 23,0 Cu, 25,5 Fe, 33,0 S, 0,5 CaO, 0,5 MgO, 2,0 SiO2,5,2 Al2O3,10,3 прочие.
По минералогическому составу медь и железо находится в виде CuFeS2, остальное железо в виде FeS2.
Расчет ведем на 100 кг сырья.
Рассчитаем содержание CuFeS2
63,6 кг Cu входят в 183,4 кг CuFeS2
23 кг Cu входят в х кг CuFeS2
Х = 66,32 кг
Зная количество и состав халькопирита, найдем сколько серы и железа связано в халькопирите
183,4 кг CuFeS2 содержат 64 кг S
66,32 кг CuFeS2 содержат х кг S
Х = 23,14 кг
Количество железа в халькопирите
183,4 кг CuFeS2 содержат 64 кг Fe
66,32 кг CuFeS2 содержат х кг Fe
Х = 20,18 кг
Количество железа в пирите
25,5 – 20,18 = 5,32 кг
С этим количеством железа связано серы
55,8 кг Fe – 64 кг S
5,32 кг Fe – х кг S
Х = 6,10 кг
Количество пирита
5,32 + 6,10 = 11,42 кг
Остальная серы находится в элементарном состоянии
33 – 23,14 – 6,10 = 3,76 кг
По данным расчета составляем таблицу 1 рационального состава медного сырья.
Таблица 1 - Рациональный состав медного сырья, % CuFeS2
Минералы |
Cu |
Fe |
S |
SiO2 |
CaO |
MgO |
Al2O3 |
прочие |
всего |
CuFeS2 |
23 |
20,18 |
23,14 |
66,32 | |||||
FeS2 |
5,32 |
6,10 |
11,42 | ||||||
S2 |
3,76 |
3,76 | |||||||
Пустая порода |
2,0 |
0,5 |
0,5 |
5,2 |
10,3 |
18,5 | |||
всего |
23 |
25,5 |
33,0 |
2,0 |
0,5 |
0,5 |
5,2 |
10,3 |
100 |
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды