Деформация и разрушение металлов

2.3 Взаимосвязь деформации с крепостью материалов

Крепость – это физическая способность материала оказывать сопротивление его повреждению при действии сил, ведущих к деформации и внутренние напряжения материала. Под действием этих известных сил материал просто напросто может подвергаться кручению, растяжению, изгибу, сжатию, срезу. Крепость крепкого вещес

тва в принципе обусловлена свойственными ему силами атомного взаимодействия. Подобные силы, свойственные для молекул и атомов, имеют все шансы достигать очень больших значений. Но, в XX годах академик А. Ф. Иоффе показал нам наличие даже небольших неплотностей, трещин и других дефектов вещества, неизбежных в настоящих твердых материалах, в несколько раз уменьшает их прочность по сравнению с теорией. Таким образом, дефекты макроструктуры материала отрицательно отражаются на его твердости.

Твердость материала – это его способность сопротивляться пластической деформации или разрушению при местном силовом воздействии; одно из основных механических свойств материалов. Зависит от структуры материала и других его механических характеристик, от вида обработки поверхности, температуры, модуля упругости при деформации и предела прочности при разрушении.

Твердость измеряется вдавливанием в поверхность материала или перемещением по ней под нагрузкой специальных наконечников — инденторов, имеющих сферическую, коническую или другую форму. В испытуемую поверхность материала вдавливают закаленный шарик диаметром d 2,5, 5 или 10 мм (это метод по Бринеллю). Число твердости по Бринеллю – НВ - отношение нагрузки к площади поверхности отпечатка. Для получения сопоставимых данных относительно твердые материалы (НВ > 1300) испытывают при отношении P/d2 = 30, материалы средней твердости (НВ 300-1300)-при P/d2 = 10, мягкие (НВ < 300)-при P/d2 = 2,5. Испытания проводят на стационарных или переносных твердомерах при плавном приложении нагрузки и постоянстве выдержки ее в течение определенного времени (обычно 30 с). При определении твердости по Виккерсу в поверхность материала вдавливают алмазный индентор в виде наконечника, имеющего форму правильной четырехгранной пирамиды с двугранным углом при вершине в 136°. Для приблизительного определения твердости горных пород и других хрупких материалов используют метод Мооса, заключающийся в царапании исследуемого материала эталонным минералом. В этом случае твердость измеряется в условных единицах, соответствующих номеру минерала в десятибалльной шкале: тальк— 1, гипс — 2, кальцит — 3, флюорит — 4, апатит — 5, ортоклаз – 6, кварц – 7, топаз – 8, корунд — 9, алмаз — 10.

Можно сказать, что связь между деформацией и крепостью материалов самая прямая, ведь это единственное и главное свойство материала сопротивляться деформации или разрушению при силовом ударе.[4]

3 Особенности деформаций и разрушенияметаллов

3.1 Упругие и пластические деформации металлов

Упругая деформация металлов– деформация, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил, когда размеры и форма тела после снятия нагрузки восстанавливается мгновенно, со скоростью звука, т.е. она проявляется за короткий промежуток времени. Она характеризуется упругими изменениями кристаллической решетки. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное смещение атомов или поворот блоков кристалла. При растяжении монокристалла возрастают расстояния между атомами, а при сжатии — сближаются. При таком смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания, поэтому после снятия нагрузки смещенные атомы вследствие действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние, и кристаллы приобретают свою первоначальную форму и размеры.

Пластическая деформация металлов - приводит к остаточным изменениям формы и размеров тела. Пластическая деформация может осуществляться скольжением и двойникованием.

Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины. Смещение происходит по системам скольжения, причем с изменением температуры деформации системы скольжения могут изменяться.

Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий, или синхронный, сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающие те, при которых в действительности протекает процесс деформации.

Двойникование. Пластическая деформация некоторых металлов, помимо скольжения может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования.

Изменение структуры поликристаллического металла при пластической деформации. Пластическая деформация поликристаллического металла протекает аналогично деформации монокристалла - путем сдвига (скольжения) пли двойникования. Формоизменение металла при обработке давленном происходит в результате пластической деформации каждого зерна. При этом следует иметь в виду, что зерна ориентированы не одинаково, п полому пластическая деформация по может протекать одновременно н одинаково во всем объеме поликристалла.

Первоначально под микроскопом на предварительно полированных и деформированных образцах можно наблюдать следы скольжения в виде прямых линий, эти линии одинаково ориентированы в пределах отдельных зерен.

При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после деформации в результате смещения по плоскостям скольжения зерна вытягиваются в направлении действующих сил, образуя волокнистую или слоистую структуру. Одновременно с изменением формы зерна внутри нею происходит дробление блоков.[5], [6]

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы