Железобетонное каркасное 4-хэтажное здание предприятия связи в г. Лабинске

Введение

В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание всё это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость

возведения зданий и сооружений, способных выдерживать сейсмические воздействия.

При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п. Принятые конструктивные схемы должны обеспечивать необходимую прочность, устойчивость; элементы сборных конструкций должны отвечать условиям механизированного изготовления на специальных предприятиях.

При проектировании гражданских зданий необходимо стремиться к наиболее простой форме в плане и избегать перепадов высот. При проектировании часто выбирают объемно-планировочные и конструктивные решения, так как они обеспечивают максимальную унификацию и сокращение числа типоразмеров и марок конструкций.

Увеличение объема капитального строительства при одновременном расширении области применения бетона и железобетона требует всемерного облегчения конструкций и, следовательно, постоянного совершенствования методов их расчета и конструирования

1. Компоновка конструктивного решения здания

По рекомендациям п.1.2 [10] приняты: симметричная конструктивная схема (см. рис. 1.1) с равномерным распределением жесткостей конструкций и масс; конструкции из легкого бетона на пористых заполнителях, обеспечивающие наименьшие значения сейсмических сил; условия работы конструкций с целесообразным перераспределением усилий вследствие использования неупругих деформаций бетона и арматуры при сохранении общей устойчивости здания.

Участки колонн, примыкающие к жестким узлам рамы, армируют замкнутой поперечной арматурой, устанавливаемой по расчету, но не реже, чем через 100 мм. Под колонны проектируем сплошную фундаментную плиту.

Здание проектируется каркасное.

Размеры здания:

- ширина - 15,0м;

- длина - 24,0м;

Несущим является железобетонный каркас.

Фундаменты – сплошная монолитная фундаментная плита;

Перекрытия – монолитные железобетонные плиты толщиной 100мм;

Колонны – сечение 400х400мм, высотой 3000мм;

Ригеля – главная балка: - высота 750мм;

- ширина 300 мм.

– второстепенная балка: - высота 300 мм;

- ширина 200мм.

Сетка колонн 7,5х6м;

Ограждающие конструкции - самонесущие кирпичные стены;

Перемычки – сборные железобетонные.

Перегородки – кирпичные.

Кровля - плоско-совмещенная с покрытием рубероидным ковром.

Лестницы – из сборных железобетонных маршей и площадок.

2. Определение сейсмичности строительной площадки и

сбор нагрузок

Требуется рассчитать конструкции жилого здания, при его привязке к площадке строительства.

Согласно СНиП II-7-81* (Строительство в сейсмических районах) в разделе Общее сейсмическое районирование территории Российской Федерации ОСР-97” (Список населенных пунктов) по карте ОСР-97-В-5% сейсмичность района г. Лабинск составляет 8 баллов (Карта В - объекты повышенной ответственности и особо ответственные объекты. Решение о выборе карты при проектировании конкретного объекта принимается заказчиком по представлению генерального проектировщика, за исключением случаев, оговоренных в других нормативных документах).

Определение сейсмичности площадки строительства производим на основании сейсмического микрорайонирования для III категории групп по сейсмическим свойствам, грунты которых являются: пески гравелистые, крупные и средней крупности плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем консистенции IL 0,5 при коэффициенте пористости е < 0,9 для глин и суглинков и е < 0,7 - для супесей.

Сейсмичность площадки строительства при сейсмичности района 8 баллов, составляет 9 баллов.

Согласно выше перечисленному значения коэффициента динамичности bi в зависимости от расчетного периода собственных колебаний Тi здания или сооружения по i-му тону при определении сейсмических нагрузок следует принимать по формулам (1).

Для грунтов III категорий по сейсмическим свойствам

приТi £ 0,1 с bi = 1 + 1,5Тi

при 0,1 с < Тi < 0,8 с bi = 2,5 (1)

приТi ³ 0,8 с bi = 2,5 (0,8/ Тi)0,5

Во всех случаях значения bi должны приниматься не менее 0,8.

2.1 Сбор нагрузок

Сбор нагрузок производим на 1 м2 покрытия здания и перекрытия.

Конструктивное решение пола принимаем одинаковым для всех этажей.

Сбор нагрузок производим в табличной форме и представлен в таблице 2.1;2.2

Таблица 2.1 Нагрузка на 1м2 покрытия

Вид нагрузки

Нормативная нагрузка, Н/м2

Коэффициент надёжности по нагрузке

Расчётная нагрузка, Н/м2

Постоянная:

     

Собственный вес плиты δ=100мм

(ρ=2500кг/м3)

2500

1,1

2750

Пароизоляция 1 слой пергамина

0,05

1,3

0,065

Утеплитель- керамзитобетон δ=80мм (ρ=800кг/м3)

640

1,3

832

Цементно-песчаная стяжка δ=20мм

360

1,3

390

4 слоя рубероида на мастике

0,2

1,3

0,26

слой гравия δ=10мм

0,2

1,3

0,26

Итого

3500

 

3973

Временная

     

Снеговая

-

 

1100

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Строительство и архитектура»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы