Линейные и нелинейные электрические цепи постоянного тока
При соединении трехфазной цепи треугольником расчет будет вести символическим методом.
1) Модули фазных напряжений при соединении треугольником равны линейным напряжениям.
UЛ=UФ=38 В, то есть В
Комплексы данных напряжений запишем из условия, что вектор совмещен с действующей осью комплексной плоскости;
В;
В;
В.
2) Вычислить комплексы фазных сопротивлений.
Ом,
где ZAB=2 Ом, φAB=19,9º;
Ом,
где ZBC=4,82 Ом, φBC=30º;
Ом,
где ZCA=4,03 Ом, φCA=39,5º.
3) Определить фазные токи:
А,
модуль IAB=19 А, ψAB=-19,9º;
,
модуль IBC=7,88 А, ψBC=-90º;
А,
модуль ICA=9,43 А, ψCA=80,5º.
4) Находим линейные токи из уравнений, записанных по первому закону Кирхгофа для узлов A, B, C.
А,
модуль IА=22,69 А, аргумент ψА=44º;
А,
модуль IB=17,93 А, аргумент ψB=-4,5º;
A,
модуль IC=17,25 А, аргумент ψC=84,9º.
5) Вычислить мощность каждой фазы и всей цепи:
ВּА,
где SAB=722 BּA, PAB=679,89 Вт, QAB=-245,75 вар;
ВּА,
где SВС=299,44 BּA, PBС=-259,32 Вт, QAB=149,72 вар;
ВּА,
где SCA=360,24 BּA, PCA=-337,43 Вт, QAB=-126,16 вар;
где S=236,89 BּA, P=82,14 Вт, QAB=-222,19 вар.
6) Строим в масштабе векторную диаграмму напряжений и токов.
Векторы фазных токов , , строятся под углами ψAB, ψBC, ψCA к действительной оси. К концам векторов , , пристраиваются отрицательные фазные токи согласно уравнениям:
, , .
Замыкающие векторные треугольники векторов , , представляют в выбранном масштабе линейные токи.
Выбираем масштаб: MI=3 А/см.
см;
см;
см.
рис 2.5
2.3 Исследование переходных процессов в электрических цепях, содержащих конденсатор и сопротивление
Цепь с последовательно включенными конденсатором емкостью С = 50 мкФ и сопротивлением R = 10 КОм подсоединяется к источнику постоянного напряжения U = 50 В (переключатель в положении 1). Определить законы изменения переходных напряжений и тока при заряде конденсатора и построить их графики. Затем цепь отключается от источника и одновременно переключатель переводится в положение 2. Определить законы изменения переходных напряжений и тока при разряде конденсатора и построить их графики. Определить фактическую длительность заряда и разряда конденсатора и энергию электрического поля при 1 = Зτ. Схема цепи приведена на рис.2.6
рис 2.6 |
Дано: С = 50 мкФ, R = 10 КОм, U = 50 В. Определить: i=f (t),t; uc=f (t),W. |
1) Переключатель в положении 1 (заряд конденсатора)
τ =RּC=104ּ50ּ16-6=0,5c
На основании второго закона коммутации получены законы, характеризующие напряжение и ток при заряде конденсатора.
где U - напряжение источника
uуст=U - установившееся значение напряжения при заряде конденсатора
- свободная составляющая напряжения при заряде конденсатора.
Зарядный ток равен свободной составляющей, т.к ток установившегося режима равен 0 (iуст=0).
Длительность заряда конденсатора:
t=5τ=5ּ0,5=2,5 с.
Вычисляем значение напряжения на конденсаторе при его заряде для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t=0, В;
t=τ, B;
t=2τ, B;
t=3τ, B;
t=4τ, B;
t=5τ, B.
Аналогично вычисляем значения зарядного тока согласно закону изменения переходного тока при заряде конденсатора для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода