Дрейфовые транзисторы их параметры, преимущества и недостатки
Таким образом, в нормальном активном режиме работы транзистора (UK<<-φT) и низком уровне инжекции электронов в базе
(2.1.10)
С помощью полученного выражения можно получить распределение п(х) в аналитическом виде, если интеграл от N(x) выражается в квадратурах. В противном случае необходимо применять численные ме
тоды.
Рассмотрим практически важный случай, когда реальную зависимость N(x) в базе можно аппроксимировать экспонентой. На рис. 2.1.1,6 такая аппроксимация соответствует штриховой линии, которая проходит через точки графика с координатами (хЭ, NАЭ) и (xК, No), т.е.
N*(x)=-N*10·e-ax+N0=-NАЭ exp(-a(x-xЭ)+N0. (2.1.11)
Параметры аппроксимации определяются следующим образом:
N*10=NАЭexp(axЭ). (2.1.12)
Учитывая то что напряженность электрического поля равна[4]:
(2.1.13)
Получаем
(2.1.14)
Это означает, что при экспоненциальном распределении примеси напряженность электрического поля практически во всей квазиэлектронейтральной базе постоянна, за исключением небольшой приколлекторной части базы, как правило, занятой ОПЗ коллекторного перехода. Знак минус означает, что поле в базе направлено против оси х, т. е. ускоряет электроны от эмиттера к коллектору. Для оценки «силы» влияния ускоряющего поля в базе вводят понятие фактора поля, который показывает, во сколько раз разность потенциалов в базе ΔUБx=ExWБ0, возникающая за счет наличия «встроенного» поля в базе Ех, больше φТ:
(2.1.15)
Таким образом, фактор поля тем больше, чем больше перепад концентрации акцепторов в базе. Например, при NАЭ = 1016 см-3 , N0=1014 см -3 имеем η=4,6.
Подставляя (2.1.11) в (2.1.10) и учитывая, что практически во всей базе N* (х) >>N0), получаем
(2.1.16)
В бездрейфовом транзисторе η =o, и распределение концентрации электронов в базе практически линейно. При наличии ускоряющего (η >o) электрического поля часть тока электронов по-прежнему переносится за счет диффузии, а другая часть — за счет дрейфа. По этой причине градиент концентрации электронов вблизи эмиттера уменьшается, как показано на рис. 2.1.2 [4]
а) распределение концентрации электронов от координаты, б) -зависимость m(η} в транзисторе с ускоряющим полем в базе, в) распределение п(х) в реальном транзисторе
Рис. 2.1.2.
Уменьшается и общий заряд электронов Qn в базе. Это приводит к уменьшению тока объемной рекомбинации электронов в базе JvA=Qn/τn, а значит, к возрастанию коэффициента переноса при увеличении ускоряющего поля в базе. Вычисляя заряд Qn и ток объемной рекомбинации электронов в базе в соответствии с выражениями [4]:
(2.1.17)
и (2.1.18)
и учитывая, что 1пх= =-SэJпх, получаем
(2.1.19)
(2.1.20)
Функция F (η) учитывает влияние ускоряющего поля в базе и определяется выражением
(2.1.21)
График зависимости т(η) приведен на рис. 2.1.2,6. Штриховая линия соответствует линейной аппроксимации m(η)≈1+0,45η. Значение коэффициента переноса определяется выражением
(2.1.22)
Таким образом, коэффициент переноса в дрейфовом транзисторе оказывается больше, чем в транзисторе с однородной базой такой же толщины, так как значения функции F(η)<l.
Постоянная накопления заряда электронов в базе дрейфового транзистора сильно уменьшается с ростом ускоряющего поля в базе.
(2.1.23)
При наличии тормозящего поля в базе (знак фактора поля η меняется на противоположный) τα увеличивается с ростом η, а коэффициент переноса χ сильно уменьшается.
В транзисторах, изготовленных методом двойной односторонней диффузии (см. рис. 2.1.1), наличие тормозящего поля в начале базы частично или полностью компенсирует положительное влияние ускоряющего поля в остальной части базы. Распределение п(х) показано на рис. 2.1.2, б сплошной линией. Поэтому эффективные значения функции m(η) не столь высоки и могут быть даже меньше единицы. В таких транзисторах основной вклад в уменьшение постоянной накопления дает не поле в базе, а малая толщина базы, обеспечиваемая диффузионной технологией.
2.2 Физические процессы в дрейфовых транзисторах при больших плотностях тока
При больших плотностях тока концентрация электронов в базе п+-р-п-п+ транзистора увеличивается, а в силу квазиэлектронейтральности увеличивается и концентрация дырок. Это приводит к повышению уровня инжекции в определенных частях базы и ликвидации там встроенного электрического поля. Для транзистора, полученного методом двойной односторонней диффузии, уровень инжекции электронов наиболее сильно увеличивается в приэмиттерной части, а затем и в приколлекторной части базы (рис. 2.16, в). Повышение концентрации дырок в базе вблизи ОПЗ эмиттера приводит к возрастанию доли тока дырок, инжектированных из базы в эмиттер, и снижению коэффициента инжекции. При дальнейшем увеличении тока уровень инжекции становится высоким практически во всей области базы [n(x)>>|N(x)|] и процессы переноса электронов в базе дрейфового транзистора подобны процессам в базе бездрейфового транзистора. Указанные процессы определяют зависимость коэффициента передачи тока от тока коллектора (или эмиттера). Эффекты Кирка и квазинасыщения дают дополнительный вклад в спад коэффициента передачи тока транзистора при больших плотностях тока.
Рассмотрим физические процессы, происходящие в базе транзистора при произвольных уровнях инжекции. Граничное условие для носителей заряда в базе на границе ОПЗ эмиттера имеет вид[4]
(2.2.1)
Подставив (2.2.1) в (2.1.4) и полагая х=х2Э, получим выражение для сквозного тока электронов в базе
(2.2.2)
Интеграл от концентрации дырок р(х) в базе с помощью условия квазиэлектронейтральности (2.1.8) можно представить в виде
(2.2.3)
Здесь Qp и Qn — заряды дырок и электронов в квазиэлектронейтральной базе, a QВ0 — заряд равновесных дырок в базе:
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода