Внутренние силы и напряжения, возникающие в поперечных сечениях бруса при растяжении и сжатии

Под растяжением, понимается такой вид нагружения, при котором в поперечных сечениях бруса (стержня) возникают только нормальные силы, а все прочие внутренние силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.

Обычным является растяжение стержня силами, приложенными к его концам. Передача усили

й к стержню может быть осуществлена различными способами, как это показано на рис. 15. Во всех случаях, однако, система внешних сил образует равнодействующую Р, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня расчетная схема в рассматриваемых случаях оказывается единой. Она показана на рис. 15, г.

Если воспользоваться методом сечений, то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы N, равные силе Р (рис. 16),

Сжатие отличается от растяжения, формально говоря, только знаком силы N. При растяжении нормальная сила N направлена от сечения, а при сжатии — к сечению. Таким образом, при анализе внутренних сил сохраняется единство подхода к вопросам растяжения и сжатия. Вместе с тем между этими двумя типами нагружения могут обнаружиться и качественные различия, как, например, при изучении процессов разрушения материалов или при исследовании поведения длинных и тонких стержней, для которых сжатие сопровождается, как правило, изгибом.

Рассмотрим напряжения, возникающие в поперечном сечении растянутого стержня. Нормальная сила N является равнодействующей внутренних сил в сечении (рис. 17). Естественно предположить, что для однородного стержня внутренние силы распределены по сечению равномерно. Тогда нормальное напряжение для всех точек сечения будет одним и тем же:

(1.1)

где Р — площадь поперечного сечения.

Понятно, что высказанное предположение о равномерном распределении внутренних сил в поперечном сечении справедливо лишь постольку, поскольку из рассмотрения исключаются особенности конкретно взятого стержня в связи с условиями его закрепления на концах. Здесь руководствуются правилом, которое принято называть принципом Сен-Венана, по имени известного французского ученого прошлого века. Принцип Сен-Венана является общим, но применительно к стержням он может быть сформулирован следующим образом. Особенности приложения внешних сил к растянутому стержню проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня. Это значит, исключение составляют тонкостенные стержни (см, гл. XI).

Что при изучении растянутого стержня достаточно принимать во внимание только равнодействующую внешних сил Р, не интересуясь особенностями приложения нагрузки. Для этого надо исключить из рассмотрения часть стержня, расположенную в зоне приложения внеших сил. На рис. 15 это как раз и показано. Отбрасывая части стержня, примыкающие к его концам, получаем единую расчетную схему (рис. 15, г), независимо от способа приложения внешних сил.

Приведенные рассуждения могут быть отнесены также и к особым участкам стержня, содержащим резкое изменение геометрических форм. Например, для ступенчатого бруса, показанного на рис. 18, следует исключить из рассмотрения зону скачкообразного перехода от одного диаметра к другому и зоны, примыкающие к отверстиям. Во всех остальных участках напряжения в поперечных сечениях будут распределены равномерно и определяются по формуле (1.1).

Для однородного, растянутого, нагруженного по концам стержня напряжения остаются постоянными как по сечению, так и по длине, т. е. сохраняются неизменными для всех точек объема, занимаемого телом. Такое напряженное состояние называется однородным. При однородном напряженном состоянии все точки тела находятся в одинаковых условиях. Понятие однородного напряженного состояния тесно связано с понятием сплошной среды. Ясно, что распределение внутренних сил в реальных условиях не может быть равномерным из-за неоднородности кристаллических зерен металла и молекулярного строения вещества. Поэтому, когда говорят о равномерном распределении внутренних сил по сечению, имеют в виду распределение без микроскопической детализации в пределах площадок, существенно превышающих размеры сечений кристаллических зерен. Сделанная оговорка относится не только к растяжению и сжатию, но и вообще ко всем другим видам нагружения, которые будут рассмотрены в дальнейшем.

При растяжении, однако, не всегда возникает однородное напряженное состояние. Так, например, у стержня с переменной площадью поперечного сечения (рис. 19, а) напряжения меняются по длине и напряженное состояние не однородно. То же самое имеет место и для стержня, нагруженного собственным весом (рис. 19, б).

Размеры растянутого стержня меняются в зависимости от величины приложенных сил. Если до нагружения стержня его длина была равна /, то после нагружения она станет равной(рис. 20).

Величину А называют абсолютным удлинением стержня.

Будем считать, что абсолютное удлинение и деформации связаны только с напряжениями, возникающими в стержне. В действительности имеются и другие факторы, влияющие на величину деформаций. Так, например, деформации зависят от температуры и от времени действия нагрузки. Величина неупругих деформаций зависит от «истории» нагружения, т. е. от порядка возрастания и убывания внешних сил. Пока, однако, этих вопросов мы касаться не будем.

Поскольку у нагруженного стержня (рис. 20) напряженное состояние является однородным и все участки растянутого стержня находятся в одинаковых условиях, деформация е по оси стержня остается одной и той же, равной своему среднему значению по длине l:

Эта величина называется относительным удлинением стержня.

Если бы в стержне (рис. 20) возникало неоднородное напряженное состояние, деформация в сечении А определялась бы путем предельного перехода к малому участку длиной dz и тогда

Заметим, что вследствие равномерного распределения напряжений по сечению удлинения для всех элементарных отрезков аЬ (рис. 20), взятых на участке, оказываются одинаковыми. Следовательно, если концы отрезков до нагружения образуют плоскость, ТО и после нагружения стержня они образуют плоскость, но смещенную вдоль оси стержня. Это положение может быть взято в основу толкования механизма растяжения и сжатия и трактуется как гипотеза плоских сечений (гипотеза Бернулли). Если эту гипотезу принять как основную, то тогда из нее, уже как следствие, вытекает высказанное ранее предположение о равномерности распределения напряжений в поперечном сечении.

Страница:  1  2  3 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы