Анализ и моделирование методов когерентной оптики в медицине и биологии

Рис. 2.1. Наблюдение изображения с обычной оптической голограммы

Рис. 2.2. Наблюдение изображения с голограммы небольшого размера, например, акустической.

Такое удачное стечение обстоятельств действительно имеет место в случае с когерентной оптико

й, но оно не приводит к стабильному преимуществу. Цифровые матричные преобразователи и цифровые процессоры станут более дешевыми и более быстрыми. Для того чтобы сохранять свое место, средства когерентной оптики должны также совершенствоваться.

Получение акустической голограммы — сложная задача, выходящая за рамки данной главы (более детальное рассмотрение см. в [1.16]), но Мы можем наметить те моменты, которые характерны для выбранного метода при любых применениях. Первый момент состоит в решении, должна ли голограмма быть получена в реальном времени. Голографирование в реальном времени является действительной необходимостью для некоторых объектов (например, плавающая рыба, работающие мышцы). Важно помнить, что объект должен быть, не только фотографически неподвижен (движение меньше, чем разрешение), но также и голографическн неподвижен (движение меньше чем четверть длины волны). Таким образом, хотя использование акустических голограмм, снимаемых в стационарных условиях, широко предлагалось для промышленного контроля, биомеднцииская акустическая голография почти исключительно связана с методами, использующими реальное время. Второй момент заключается в методе освещения объекта.

Так как внешние поверхности объектов легко записываются с помощью оптической голографии, акустическую голографию редко применяют для регистрации звука, рассеянного поверхностью. Скорее, ее используют почти исключительно для (наблюдения) видения сквозь оптически непрозрачные объекты. Таким образом, объект должен просвечиваться, но только звуковыми волнами. Для того чтобы связать эффективно ультразвук с объектом, а затем с записывающей плоскостью, все устройство и объект обычно погружаются в жидкость (как правило, в воду).

Вследствие большой величины относительного отверстия нетрудно изготовить высококачественные акустические линзы; такие линзы используют часто для перенесения изображения объекта ближе к плоскости голограммы, что обеспечивает запись голограммы с большой величиной относительного отверстия для достаточно удаленных объектов. Следующим шагом является введение опорного пучка. Преобразователи и управляющая электроника настолько хороши, а частоты так низки (по сравнению с оптическими частотами), что можно получать объектный и опорный пучки от разных преобразователей. Мы выбираем такую схему, чтобы она давала интерференционные полосы, разрешимые регистрирующей средой (при этом осуществляется запись максимального количества информации).

Преимущества формирования акустических изображений перед неакустическими в биомедицинских применениях очевидны и просты. При получении изображений внутренних органов ультразвук гораздо более безопасен, чем рентгеновские лучи, хотя требования к технике безопасности все еще активно обсуждаются. Однако даже ультразвук не безвреден, и, по-видимому, оценки допустимой дозы ежегодно пересматриваются в меньшую сторону. Таким образом, чувствительность различных методов имеет очень большое значение. Ограничения чувствительности могут возникать из ультразвуковых эффектов или из эффектов записи или восстановления. Так, например, квантовый шум может ограничивать чувствительность акустических методов, используемых в реальном масштабе времени, которые предполагают восстановление лазерным пучком. С помощью ультразвука легко распознаются мягкие ткани, являющиеся почти одинаково прозрачными для рентгеновских лучей.

С другой стороны, преимущества акустической голографии перед наиболее развитыми неголографическими акустическими методами формирования изображений уже не вполне очевидны. Даже разрешение по глубине доступно неголографическим способам [1.20]. Высокое поперечное разрешение легко осуществимо с помощью сканирующих преобразователей.

Рис. 2.3. Коммерческая ультразвуковая голографическая установка (С разрешения фирмы Holosonics, Inc.).

Таким образом, имеется иерархия несомненных фактов. Наиболее определенным фактом является полезность формирования изображения с помощью ультразвуковых волн в биомедицинских исследованиях. Менее очевидно, следует ли это изображение формировать голографическим или неголографическим способом.

Наименее определенно, по-прежнему ли этап формирования видимого изображения в акустической голографии будет включать использование когерентного света, даже если выбрана акустическая голография. Когерентные оптические методы наиболее полезны там, где затруднена обработка на вычислительной машине: в формировании изображений в реальном времени.

Визуализация акустических трехмерных изображений позволяет наблюдать объекты, интересные в биомедицинском отношении в реальном времени в выбранных по глубине плоскостях. Динамические изображения всегда гораздо лучше (косметически), чем отдельные кадры, как будет показано ниже, так как движение стремится размыть «когерентные эффекты». На рис. 2.3. показана промышленная система ультразвуковой голографии, основанная на стоячих рельефных волнах на поверхности жидкости, получающихся в результате интерференции между акустическими опорным и объектным пучками. Облучение этой поверхности лазерным пучком создает достоверное томографическое изображение объекта. Так, видикон может сканировать изображение с тем, чтобы наблюдать различные сечения объекта. Одним из наиболее полезных применений является визуализация объектов с переменной и неизвестной глубиной.

На рис. 2.4 показаны кровеносные сосуды человека в конечностях (глубоко лежащие внутренние структуры взрослых людей оказываются слишком сложными объектами для получения изображений с помощью существующего оборудования). Эти картины были сняты с телевизионного устройства только что описанной системы, когда конечность помещали в просвечиваемый ультразвуком резервуар с водой. Существует много потенциальных применений акустической голографии.

Рис. 2.4. Изображение, полученное с помощью ультразвуковой голографической установки, приведенной на рис. 2.3 (С разрешения фирмы Holosonics, Inc.). с — раэдноенный кровеносный сосуд в верхней части рукн: б — глубокий кровеносный сосуд в нижней части ноги вблизи большой берцовой кости.

Рис. 2.5. Псевдоскопическое изображение тропической рыбки, полученное в реальном времени Вейдом и Лэндри (Калифорнийский университет, Санта-Барбара) в 1968 г.

Непрозрачность кристаллов холестерина указывает па возможность наблюдения холестериновых образований в сосудах. Еще одной когерентной оптической системой, работающей в реальном времени, является формирование изображений на основе дифракции Брэгга. В такой системе объект освещается одночастотным преобразователем, расположенным на дне резервуара с жидкостью. Трехмерное звуковое поле, образованное в резервуаре, характеризует трехмерную структуру объекта. Освещение такой трехмерной звуковой картины лазерным пучком приводит к дифракции света. Дифракция на трехмерных структурах называется дифракцией Брэгга. Анализ продифрагированного света с помощью линзы создает трехмерное оптическое изображение объекта, каким он наблюдается на выбранной длине акустической волны. Так как длины оптической и звуковой волн не равны, различны поперечное и продольное увеличения, т. е. оптическое изображение до некоторой степени искажено. На рис. 2.5 приведено одно из первых изображений биологического объекта, полученного с помощью дифракции Брэгга. Спустя семь лет после получения этого изображения качество и разрешение изображений, получаемых по этому методу, были значительно улучшены, но, не было снято никаких изображений биологического характера.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы