Анализ и моделирование методов когерентной оптики в медицине и биологии

Обычная микроскопия встречается с некоторыми трудностями, которые можно уменьшить, воспользовавшись голографией. Например, неудовлетворительная коррекция линз в обычной микроскопии лимитирует качество изображения. В голографии можно скорректировать любые недостатки линз, если они известны. Таким образом, голографию можно использовать для получения дифракционно-ограниченных изображений при больш

их относительных отверстиях и низкокачественных объективах микроскопа. Одним из способов достижения этого является использование голограммы в качестве корректирующего элемента для превращения реального импульсного отклика объектива в необходимый. Другой способ [1.4] состоит в пропускании восстановленного волнового фронта обратно через линзу низкого качества с целью формирования неувеличенпого дифракционно-ограниченного изображения объекта для последующего исследования с помощью обычных микроскопов с лучшими объективами.

Рис. 1.1.Схема голографической записи увеличенного изображения

Рассмотрев эти три области голографической микроскопии достаточно глубоко, чтобы увидеть их цели и взаимосвязи, обратимся теперь к нескольким иллюстрирующим примерам.

Каким образом записываются объекты голографически для последующего микроскопического изучения? Ответ на этот вопрос будет: «Любым способом, при котором можно зарегистрировать объект при достаточно большом относительном отверстии для получения, требуемого разрешения». Это не всегда легко сделать. Использовались два подхода.

В первом подходе записывались голограммы изображений, сформированных объективами микроскопов с большим относительным отверстием. Это несколько облегчает получение голограммы с требуемым относительным отверстием. Чтобы записать изображение с высоким разрешением, мы должны видеть объект под широким углом, или, что- то же самое, использовать систему с большим относительным отверстием. Тогда поперечное разрешение равняется приблизительно Nл, где л — длина волны света, формирующего изображение. В таком случае достижение высокого разрешения влечет за собой требование большой величины относительного отверстия. Это положение иллюстрируется рис. 1.1. Восстановленный волновой фронт можно наблюдать при помощи обыкновенного окуляра, если восстанавливающий пучок повторяет в точности опорный пучок. Если восстанавливающий пучок имеет обратное направление, восстановленный фронт можно наблюдать, пропуская пучок обратно через объектив для автоматической коррекции. Автоматическая коррекция имеет место также в случае, если вместо обычного объекта регистрируется точечный объект. Таким образом, сформированная голограмма превращает каждую отдельную точку объекта в копию референтной точки. В этом случае результирующее изображение образуется из более резких, а не размытых точек. Все эти методы успешно использовались в топографических лабораториях. Одним из наиболее занимательных применений являлась киноголографическая микроскопия [1.5], когда голографический кинофильм снимался через микроскопический объектив. Так как регулировку фокусировки можно осуществлять a posteriori, имеется возможность наблюдать за объектами, которые обычно выходят из фокуса. Действительно, возможность перефокусировки дает трехмерную информацию о положении объекта. Рис. 1.2 иллюстрирует некоторые преимущества киноголографической микроскопии: мы можем иметь как большую скорость кадров, так и время для коррекции фокуса в каждом кадре, так как фокусировку можно произвести на этапе восстановления изображения.

Во втором подходе используется безлинзовое формирование изображения при большом относительном отверстии. Это означает, что объект должен находиться настолько близко к голографической записывающей среде, чтобы необходимый участок регистрирующей среды получал информацию от любой части объекта. Это в свою очередь влечет за собой проблемы, связанные с установкой опорного и освещающего объект пучков, а также с положением регистрирующей среды. Было предложено много методов для достижения этого. На рис. 1.3 показано, как записывают нормальные голограммы объектов. Проблемы, связанные с приближением записывающей среды к объекту, не просты. На рис. 1.4 показано, каким образом объектный и опорный пучки (но не освещающий пучок) могут падать на записывающую среду даже в случае, если объект и записывающая среда находятся на одной оси. Ясно, что обычное расположение (рис. 1.3) не может быть использовано для получения желаемого результата, так как нет возможности осветить объект или ввести опорный пучок. Макмахоном и Колфилдом было предложено несколько решений этой проблемы [1.6].

Другой, еще более простой метод был разработан Томпсоном и др. [1.7] для исследования микроструктуры капель тумана, однако его можно использовать и в случае биологических объектов. Луч от импульсного лазера падает на частицы вблизи фотографической пластинки. Дифрагированный свет от частиц интерферирует с недифрагированным светом, образуя голограмму. В этом случае, так же как и при оригинальной габоровской голограмме [1.2], на стадии восстановления наблюдались три перекрывающихся волновых фронта, соответствующих непродифрагированному восстанавливающему лучу, мнимому изображению объекта и действительному изображению объекта. Часто одно из этих изображений совпадало с расфокусированным изображением другого (с сопряженным изображением).

Томпсон и др. показали, что при коллимированиом опорном и восстанавливающем пучках и голограмме, находящейся в дальней области, одно изображение можно удалить на бесконечность, т.е. наблюдать так далеко от фокуса, что оно будет пренебрежимой помехой при наблюдении другого изображения. За одну экспозицию лазерным импульсом записывают формы и положения всех частиц вблизи записывающей среды. По чисто техническим причинам (см. приложение) мы не можем наблюдать все частицы одновременно. Однако мы можем исследовать их по сечениям. При воспроизведении наблюдаются изображения частиц как в фокусе, так и вне его. Передвигая экран для наблюдения или видикоп на различные расстояния от голограммы, мы можем наблюдать, как изображения входят и выходят из фокуса. Изображение находится в фокусе, когда его размеры и окружности вокруг него минимальны.

Рис. 1.2.

Фотографии изображений, восстановленных с одного кадра микрокиноголограммы. Показана различная глубина фокуса, что можно видеть по появлению и исчезновению капилляров из фокуса. Можно видеть пузырьки, проходящие по центральной артерии (С разрешения М. Е. Кокса, Университет Мичиган-Флинт).

Рисунок 1.3. Обычная схема записи голограмм

Рис. 1.4 Предпочтительная схема записи голограмм

Было реализовано несколько интересных биомедицинских применений. Один из наиболее наглядных примеров следует из работы Ботнера и Томпсона [1.8] по волокнистым материалам, которые из-за своих размеров не фильтруются нашими дыхательными органами и вследствие этого являются потенциально токсичными. На рис. 1.5,а показана голограмма. Буквы Л, В, С указывают местоположения в плоскости х—у трех частиц, находящихся на различных глубинах. На вставках б, в и г показаны сами частицы в плоскостях наилучшей фокусировки. Таким образом, рис. 1.5 демонстрирует, как осуществляется голографический анализ микрочастиц. Каждая дифракционная картина на голограмме есть указатель частицы, находящейся на одной оси с опорным пучком в момент излучения импульса лазера. Освещая эту картину (голограмму отдельной частицы) копией опорного пучка, только противоположно направленной, мы формируем точное действительное изображение частицы (подверженное дифракционным ограничениям, накладываемым размером голограммы, размером частицы и расстоянием частицы от пластинки). Если бы объектом была математическая точка на расстоянии d от записывающей среды, ее голограмма была бы похожа на френелевскую зонную пластинку с фокусным расстоянием d.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы