Характеристика белков

В настоящее время предложен ряд методов, которые позволяют расшифровать аминокислотный состав белка при наличии очень небольших его количеств. Среди этих методов наибольшее значение имеют хроматография, изотопное разбавление.

В состав белков входит около 25 различных аминокислот. При гидролизе каждого данного белка могут образоваться все эти аминокислоты или только некоторые из них в разных

пропорциях для каждого белка. Из 20 различных аминокислот можно построить 2,3- 1018 изомеров белковой молекулы, что подчеркивает сложность определения структуры и осуществления синтеза белков.

Растворимые белки монодисперсны, так как имеют строго определенный аминокислотный состав и чередование отдельных остатков аминокислот.

Остатки аминокислот связаны в белковой молекуле линейно пептидными связями. Карбоксильная группа одной молекулы аминокислоты образует амид, взаимодействуя с аминогруппой соседней молекулы аминокислоты. Отдельные пептидные звенья — МН — СО — СНК — отличаются друг от друга только боковыми группами.

Соединения, содержащие несколько аминокислотных остатков, называют пептидами. Соединения с большим количеством пептидных звеньев называют полипептидами.

Белки построены еще более сложно, чем полипептиды. Однако фрагменты белковой молекулы могут рассматриваться как полипептидные звенья.

Группы К могут содержать свободные амино- или карбоксильные группы, так как некоторые белковые аминокислоты содержат две амино- (лизин) или две карбоксильные (аспарагиновая кислота) группы. Они могут содержать также группы ОН, 5Н и амидные.

Дипептид, состоящий из остатков двух различных аминокислот А и Б, может быть построен двумя способами. Например, дипептид, построенный из глицина и аланина, может иметь строение I или II :

МН2— СН2— СО— Ш— СН— СООН

СН

глицилаланин (I)

СН3—СН—СО—NН—СН2—СООН

NН2

аланилглицин (II)

Три различные аминокислоты могут быть соединены шестью различными способами и т. д.

Порядок чередования остатков аминокислот в цепи может быть установлен последовательным отщеплением с обоих концов молекулы отдельных аминокислот, которые предварительно «метятся» превращением в какие-либо устойчивые к гидролизу производные. Этим путем было установлено строение многих наиболее простых белков (инсулина, миоглобина, рибонуклеазы и др.), молекулы которых построены из нескольких десятков или сотен различных и одинаковых остатков а-аминокислот и имеют молекулярную массу порядка 5 000—20 000. Эти данные дополняются результатами рентгеноструктурного анализа. Для многих более сложных белков установлен порядок чередования нескольких аминокислотных звеньев с каждого конца молекулы.

Таким образом может быть идентифицирована конечная аминокислота. Процесс может быть снова повторен для деградированного пептида.

В случае сложных белков или полипептидов расшифровке подвергают продукты их частичного гидролиза — простые поли-пептиды, причем определяются места их «стыковки» (по различию в аминокислотном составе отдельных осколков) в сложную молекулу.

В современных лабораториях анализ аминокислотного состава и определение простых осколков проводится с помощью специальных хроматографов — автоматических аминокислотных анализаторов.

Уникальная последовательность аминокислотных остатков в цепи, характерная для каждого белка, называется первичной структурой белка.

В отличие от углеводов первичная структура белков строго специфична для каждого вида организмов. Так, гормон инсулин, построенный из 51 остатка а-аминокислот в виде двух цепей, соединенных дисульфидными мостиками, имеет неодинаковый состав у различных видов животных. Трехчленные звенья в определенном месте цепи А молекулы инсулина содержат следующие аминокислотные остатки: у быка аланин—серии—валин; у свиньи трео-нин—серии—изолейцин; у лошади треонин—глицин—изолейцин; у овцы аланин—глицин—валин; у человека треонин—серии—изолейцин (на схеме 9 они отмечены звездочками). Различия наблюдаются также в С-концевом остатке В-цепи: в инсулине человека это остаток треонина, а в инсулине быка — остаток аланина.

Отдельные молекулы белка взаимодействуют друг с другом, образуя водородные связи, причем цепи «свертываются» в виде спиралей. В так называемых фибрилярных белках отдельные цепи более растянуты. В глобулярных белках упаковка цепей более компактна.

В кристаллическом виде получены только глобулярные белки; фибрилярные белки не способны кристаллизоваться. Кристаллы белков, растущие из растворов, содержат растворитель, который входит в структуру белка, так что удаление его вызывает потерю кристалличности.

Особенности скручивания цепей белковых молекул (взаимное положение фрагментов в пространстве) называются вторичной структурой белков.

Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате возникновения этих связей происходит закручивание спирали в клубок. Эти особенности строения белков называют третичной структурой.

Наиболее всесторонне исследован белок, придающий красную окраску тканям мышц, — миоглобин. Его молекулярная масса 17 000. Он содержит одну окрашивающую группу на молекулу. Последняя имеет вид глобулы.

4 Синтез белков

Проблема синтеза белков имеет огромное практическое, теоретическое и философское значение.

Прежде чем синтезировать белки, необходимо было научиться получать более простые вещества, построенные по тому же принципу, что и белки, — полипептиды. Синтез полипептидов белков из большого числа-молекул аминокислот — очень сложная задача. Так, если требуется получить полипептид, состоящий, например, из 20 остатков аминокислот и на каждой стадии синтеза выход будет 90 %, то окончательный выход на исходное сырье будет 0,9020X 100 = 12%.

Простейшие полипептиды—кристаллические вещества, растворимые в воде и почти нерастворимые в спирте. Они дают биуретовую реакцию. Полипептиды, как и белки, играют важную роль в процессах жизнедеятельности и являются продуктами частичного гидролиза белков.

Синтез полипептидов осуществляется различными методами. Простейшие из них разработаны Э. Фишером и Абдергальденом в начале нашего века. В последнее время разработаны новые методы, позволяющие получать более сложные полипептиды.

Синтез полипептидов этими методами осуществляется в три стадии:

1. Получение аминокислот с защищенными амино- или карбоксильными группами.

2. Образование пептидной связи.

3. Избирательное отщепление защищающих групп.

Первая стадия. Временная защита аминных или карбоксильных групп позволяет соединять аминокислотные остатки в желаемой последовательности, а также лишает аминокислоты амфотерных свойств. Для дикарбоновых аминокислот необходима дополнительная защита второй карбоксильной группы, для диаминокислот — дополнительная защита аминогрупп, для аминокислот, содержащих сульфгидрильные группы, — защита этих групп. Защитные группы должны быть устойчивыми в условиях синтеза, и их введение не должно вызывать рацемизации аминокислот, Для обратимой защиты аминогрупп пригодны следующие группы.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы