Соотношения неопределённостей Гейзенберга
Содержание: Сопряжённые динамических переменных ([импульс-координата]; [энергия-время]; [момент импульса-угол поворота]). Квант действия. Принцип исключения в операторной форме, определяющий возможность совместного измерения динамических переменных.
Принцип неопределённости и его операторные выражения.
7.2. Поставим фундаментальный вопрос: «Зависит ли результат измерения от организаци
и самой процедуры измерения? Можно ли сконструировать универсальные приборы для совместного измерения любых величин?» Если ответ положительный, то последовательность измерений любой пары физических величин не играет роли, и процедуры их измерения можно выполнять в любом порядке. Если же ответ отрицательный, следует ожидать, что изменяя порядок измерений, можно получить и иной результат. Исследуем эту ситуацию.
Предстоит решить очень важную проблему, связанную с возможностью совместного измерения различных динамических переменных. Для этого рассмотрим две динамические характеристики. Им соответствуют эрмитовы операторы и , независимо преобразующие волновую функцию. В простейшем случае совместное измерение величин является комбинацией из двух последовательно выполняемых элементарных процедур. Как это выглядит математически?
Первичному измерению величины отвечает преобразование вида A = . После дующее вслед за величиной измерение величины порождает вторичное преобразование вида B=A = . В целом последовательности двух измерений отвечает цепочка из двух преобразований волновой функции в виде операторного уравнения вида:
B = .
7.2.3. Меняя порядок измерения величин, следует в общем случае ожидать и иного результата. Если первой измерена величина , а второй величина то первое измерение отображается преобразованием C = , а второе измерение уже D=C = , так что
D = .
Две эти разные последовательности измерений двух величин порождают два конечных результата B и D. В общем случае они могут не совпадать, но не исключён и нулевой результат. Составим их разность, и соберём все операторы слева от символа преобразуемой волновой функции, используя свойство ассоциативности эрмитовых операторов:
= .
Оператор называется коммутатором (по-русски «перестановщик»).
7.2.4. Мы подготовились к очень важным заключениям, а именно:
а) если итог двух последовательных измерений независим от порядка их осуществления, то коммутатор должен быть нулевым:
, т.е.
.
Компактно это выглядит как: .
б) если итог двух последовательных измерений всё же зависит от порядка их выполнения, то , т.е.
.
Коммутатор здесь не равен нулю: .
7.2.5.1. При нулевом коммутаторе порядок измерений не влияет на получаемую количественную информацию, и обе величины и могут быть измерены совместно (в одном едином общем эксперименте с помощью единого прибора).
7.2.5.2. Если коммутатор ненулевой, то получаемая информация зависит от последовательности измерений, и величины и в одном приборе в принципе совместно не могут быть измерены.
Что же имеет место в природе на самом деле? Попробуем получить ответ.
7.3.Соотношения неопределённостей Гейзенберга.
7.3.1. Накоплена достаточная информация, чтобы решить одну из важнейших проблем квантовой механики, связанную с совместными измерениями динамических переменных.
Исследуем, можно ли измерить:
- импульс частицы, находящейся в определённой точке пространства;
- момент импульса вращающейся частицы в определённой точке орбиты;
- энергию системы в конкретный момент времени.
7.3.2. Выбор этих пар динамических переменных не случаен. Эти пары величин взаимно дополняют друг друга таким образом, что их произведение обладает размерностью циклической константы Планка , так что .
Размерность величины является произведением размерностей энергии и времени или импульса и расстояния. Физическую величину с такой размерностью принято называть действием. В силу этого-то константу Планка часто называют квантом действия.
7.3.3. Образуем три коммутатора , , , необходимых для исследования этих трёх ситуаций согласно выводам предыдущих параграфов. Сразу же запишем выражения и для комплексно сопряжённых операторов.
7.3.4. Первый коммутатор построим из оператора компоненты импульса и соответствующей ему координаты:
7.3.5. Второй коммутатор построим аналогично из оператора момента импульса и ему соответствующей координаты - угла поворота плоского ротатора:
.
7.3.6. Также и третий коммутатор построим из оператора энергии и времени. Зависящий от времени гамильтониан заимствуем из временного уравнения Шрёдингера:
Перед Вами наиболее последовательный операторный вывод соотношений неопределённостей Гейзенберга. Они относятся к числу фундаментальных законов природы.