Разработка энергосберегающей технологии ректификации циклических углеводородов

Сравнение энергопотребления схем для исследуемого состава питания показывает, что максимальная разница между структурами достигает 46%. Это говорит о значительной экономии при выборе оптимального технологического решения.

Профили температур, а также расходов жидкости и пара экстрактивной колонны для оптимальных технологических схем разделения смеси циклогексан – бензол – этилбензол состав

а питания 10-80-10%мол. представлены на рис.32.

Далее проанализируем данные, полученные в результате параметрической оптимизации схем класса Ф, содержащие сложные колонны с боковыми секциями Структуры исследуемых технологических схем были представлены на рис.21, а результаты параметрической оптимизации в табл22.

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса техно-логических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на пред-проектную проработку и ускоренному созданию энергосберегающих структур. Схема 2

Схема 1

Схема 2

Схема 3

Рис.32 Профили температуры и потоков жидкости и пара экстрактивной колонны для состава исходного питания ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Таблица 22. Оптимальные параметры схем разделения смеси циклогексан – бензол – этилбензол, содержащих колонны с боковыми секциями. ЭА – анилин

Параметр

Схема

ТЭА, °С

F: ЭА

NF1

NF 2

NF3

БО кмоль/ч

QΣ, ГДж/ч

Состав ЦГ–Б–ЭБ,% мол. = 80-10-10

Схема 1-1

100

1: 0,6

3/9/22

7

99

6,10

Схема 1-2

100

1: 0,6

3/9

8/17

9

6,14

Схема 1-3

100

1: 0,6

3/11/26/34

90/15

5,75

Схема 2-1

100

1: 0,5

3/12

3/9

15

6,47

Схема 3-1

100

1: 0,6

15

5/12/23

85

8,02

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса технологических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на предпроектную проработку и ускоренному созданию энергосберегающих структур.

Оценка энергопотребления технологических схем, содержащих сложные колонны с боковыми секциями, показывает снижение тепловых нагрузок на кипятильники колонн по сравнению с традиционными структурами из простых двухотборных колонн. Результаты расчета по каждой колонне для схем класса Ф представлены в табл.23.

Таблица 23. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса Ф

Схема

R

Qконд

Qкип

К1

К2

К3

К1

К2

К3

К1

К2

К3

Состав ЦГ–Б–ЭБ,% мол. = 10-80-10

1-1

4,60

0,24

1,37

1,18

3,41

0,93

5,52

5,01

1,09

6,10

1-2

5,78

0,06

0,47

2,23

2,98

0,37

5,58

2,06

4,08

6,14

1-3

4,74

0,11

0,85

1,49

3,07

0,61

5,17

5,75

5,75

2-1

5,46

0,49

2,03

1,86

4,14

6,00

1,68

4,50

0,29

6,47

3-1

0,22

3, 19

0,04

3,58

0,94

2,96

7,48

3,64

4,38

8,02

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы