Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии

Использование органических добавок, представленных в таблице, при формировании Ni,P-покрытий позволяет получать сплавы различного состава. Установлено, что все рассмотренные вещества способствуют росту содержания фосфора в покрытии по сравнению с полученным в растворе без добавки. При этом азотсодержащие соединения [2, 6-8] повышают процент фосфора почти в три раза (от 6 до 15,6%), а серосоде

ржащие вещества [1,3-5,9-12] хотя и в меньшей степени увеличивают данный параметр (до 9%), но способствуют включению в покрытие серы (до 4%). Увеличение содержания неметаллического компонента в сплаве азотсодержащими добавками может быть обусловлено как замедлением реакции восстановления никеля, так и облегчением выделения фосфора. Одной из возможных причин понижения процента фосфора серосодержащими соединениями может быть склонность металлов к их поглощению из различных сред [7]. При этом происходит замещение части фосфора в решетке сплава на атомы серы, что способствует уменьшению его содержания.

Скорость анодного окисления гипофосфит-иона на полученных NiPx- и NiPxSy-сплавах зависит от природы гетероатома. Азотсодержащие соединения повышают скорость окисления Н2РО2- на покрытии, сформированном в их присутствии. Добавки, содержащие серу, в определенной области концентраций несколько увеличивают данный параметр, а затем резко снижают. По эффективности влияния добавки можно расположить в следующий ряд (Сдоб = 10-6 моль/л):

6 > 7 > 8 > 2 > 3 > 1 > 4 > 5 > 9 >11 > 12 >10

Если сравнить данную последовательность с опубликованным в [8] рядом по адсорбционной способности этих добавок, можно заметить, что чем сильнее адсорбционные свойства добавки, тем менее каталитически активная поверхность формируется в ее присутствии.

Рассмотрим, как каталитические свойства Ni,P-сплавов коррелируют с их составом. На рис.1, а представлена зависимость скорости окисления Н2РО2- от содержания фосфора в покрытии. Видно, что в данном случае каталитическая активность поверхности вначале возрастает с ростом содержания фосфора до 10-12%, а затем наблюдается ее снижение. Каталитические свойства поверхности также зависят от включения в покрытие серы (рис. 1, б). В малых количествах сера способствует увеличению или незначительному уменьшению скорости исследуемого процесса, а повышение ее содержания в покрытии (более 3 %) приводит к отравлению каталитической поверхности.

Согласно литературным данным [9], зависимость каталитических свойств сплава от содержания в нем серы объясняется тем, что по мере увеличения % S происходит существенное нарушение совершенства кристаллической решетки никеля, а при содержании серы больше 2.9% формируются высокодисперсные осадки с сильно разориентированными зернами. Об этом же свидетельствуют и дифрактограммы образцов Ni,P,S-сплавов, сформированных в присутствии добавки 9 (рис. 2, кр. 2).

Все это приводит к снижению каталитической активности поверхности. Повышение электрокаталитической активности никелевого электрода при включении малых количеств фосфора объясняется, по-видимому, изменением геометрической структуры поверхности: в присутствии органических добавок (как правило, азотсодержащих и серосодержащих при низких концентрациях) формируются осадки с меньшим размером зерна, сохраняющие более высокую степень кристалличности по сравнению с растворами без добавок (рис. 2, кр. 3, 4). Дальнейшее снижение скорости процесса при увеличении содержания фосфора больше 12% обусловлено аморфизацией покрытия.

Таким образом, применение органических добавок при формировании Ni,P-сплавов позволяет получать сплавы с заданными каталитическими свойствами, которые в основном определяются геометрическим фактором.

УДК 541.133.1

изучение возможности Применения материалов

«Поликон» в качестве межканального наполнителя для электродиализных установок

М.М. Кардаш, А.И. Шкабара, А.В. Павлов

Энгельсский технологический институт СГТУ

Промышленные сточные воды, отходы химических производств, продукты микробиологического синтеза – все они являются смесью веществ, содержащих слабые электролиты. Наиболее перспективными методами получения, разделения и очистки таких веществ являются мембранные методы и в частности электродиализ (ЭД). Электродиализ – это процесс разделения с использованием мембран, в которых ионы движутся сквозь ионоселективную мембрану под действием электрического тока. ЭД применяется при обессоливании воды, получении хлора, кислот и щелочей. С помощью ЭД производится очистка различных веществ от ионных примесей, ведется синтез с участием ионов, переносимых через ионообменные мембраны. При этом ЭД требует существенных затрат электроэнергии, поэтому возникает необходимость создания материалов с пониженным сопротивлением и хорошей пропускной способностью.

Одним из способов повышения эффективности электродиализа разбавленных растворов является заполнение каналов обессоливания ионообменными материалами [1]. Введение ионообменного наполнителя в каналы обессоливания должно подавлять поляризацию, что приведет к увеличению потока ионов и уменьшению сопротивления ячейки, снижая энергозатраты. При высокой поляризации межканальный наполнитель (МКН) сам может привести к распаду электролита в точке контакта с мембраной.

В данной работе проведены исследования по изучению возможности использования в качестве МКН композиционных волокнистых ионообменных материалов «Поликон», полученных методом поликонденсационного наполнения на кафедре ХТ ЭТИ СГТУ. По типу полимерной матрицы материалы «Поликон» изучались как анионообменные (эпоксидиановая полимерная матрица), так и катионообменные (фенольная сульфокатионитовая полимерная матрица), которые синтезировали на волокнистом наполнителе.

Были наработаны опытные партии ионообменных МКН, предназначенных для заполнения межэлектродного пространства. Исследования проводились совместно с кафедрой физической химии Кубанского государственного технического университета в соответствии с требованиями, предъявляемыми к МКН.

При использовании материалов «Поликон» в качестве МКН в электродиализаторах с жестко фиксированными размерами межэлектродного пространства необходимо учитывать изменение их геометрических размеров при набухании, в связи с чем проведены исследования по набухаемости.

Таблица 1

Изменение массы и размеров МКН «Поликон» при набухании

Мембрана

Сухие

Набухшие

«Поликон А»

«Поликон К»

«Поликон А»

«Поликон К»

Длина, см

12,0

12,0

12,1

12,1

Ширина, см

9,6

9,9

9,7

10,2

Толщина, см

0,042

0,061

0,073

0,102

Площадь, см2

115,2

118,8

117,4

123,4

Масса, г

6,4

8,5

8,7

12,3

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы