Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии

ИССЛЕДОВАНИЕ СВОЙСТВ ЗАЛИВОЧНЫХ ГИДРОГЕЛЕЙ

И.Н. Бурмистров, Л.Г. Панова

Энгельсский технологический институт СГТУ

Необходимость создания технически эффективных, экономически выгодных, экологически безопасных и приемлемых технологически огнестойких светопрозрачных конструкций для строительного остекления в настоящее время не вызывает сомнения

. Особое внимание следует обратить на слово «конструкция», так как достижение высокой степени огнестойкости возможно только при оптимальном сочетании параметров всех деталей в конструкции. К ним относят специальную раму, огнестойкий стеклопакет, состоящий из двух или более силикатных стёкол с полимерными или гелевыми прослойками, и специальные средства крепежа.

Конструкции, соответствующие классу остекления не ниже EI30, должны останавливать распространение всех составляющих пожара: огня, дыма и теплового излучения. Для достижения этой цели перспективно использовать триплексы из силикатного стекла и заливочных полимерных гелей. Применяемый гель должен реагировать на повышение температуры при пожаре. При этом положительный эффект достигается за счёт ряда факторов: испарение содержащейся в геле воды охлаждает конструкцию; структурирование полимерной составляющей образует каркас, удерживающий осколки стекла, и обеспечивает целостность конструкции; вспенивание геля обеспечивает высокую степень теплоизоляции уцелевшей части конструкции от высоких температур.

Данная работа посвящена разработке заливочных гелей для создания противопожарных многослойных светопрозрачных строительных конструкций.

В работе проведён анализ составов на основе следующих компонентов: состав «г1» – поливиниловый спирт (ПВС) и фосфорная кислота; состав «г2» – смесь аммониевых солей акриловых олигомеров, олигосахариды, водорастворимые силикаты натрия.

Основной задачей является максимально высокое содержание карбонизированного остатка сжигаемого геля и хорошая адгезия кокса к силикатному стеклу; а также достижение наибольшей вязкости композиции при температуре разложения и оптимальное количества летучих продуктов, вспенивающих состав.

На начальном этапе исследования был определён оптимальный состав гелей. Составы с лучшими реологическими свойствами приведены в таблице 1.

Таблица 1. Составы гелей г1, г2

Наименование

компонента

A

B

C

D

E

F

г1

10.72

34.81

54.47

г2

64,39

3,04

25,40

7,17

В качестве основных методов исследования рассматриваемых составов были выбраны метод термогравиметрического анализа, инфракрасной спектроскопии и масштабные испытания готовых светопрозрачных конструкций в огневой печи. Методом инфракрасной спектроскопии установлено отсутствие для всех составов химических реакций между компонентами гелей. На основе инфракрасных спектров поглощения доказано, что в анализируемых составах основная масса воды связана полимерным гелем. Это подтверждается, по данным TG ТГА также повышенной температурой удаления воды из геля при его разложении.

Данные ТГА-анализа показывают, что разложение гелей протекает в две стадии. На первой стадии наблюдается испарение воды и разрушение гелевой структуры, при этом образуется эластичный клейкий остаток. Энергия активации этого процесса (определяли по данным DTG) для геля г1: Е1-1 = 130,30 кДж/моль. Процесс протекает в интервале температур 80 – 200 0С. Процесс удаления воды облегчается снижением вязкости состава на начальной стадии нагревания. На второй стадии протекают процессы окисления полимерной матрицы и образования карбонизованного остатка. Энергия активации процесса Е1-2 = 123,10 кДж/моль. Процесс протекает в интервале температур 300 – 900 0С.

В геле г2 доля связанной воды значительно больше, по сравнению с гелем г1. Это объясняет смещение процесса удаления воды в область более высоких температур. Температурный интервал удаления воды и процессов структурирования карбонизованного слоя 100 – 340 0С. Энергия активации процесса Е2-1 = 142,10 кДж/моль. Процесс деструкции карбонизованного слоя протекает в интервале температур 380 – 5600С, энергия активации процесса Е2-2 = 602,99 кДж/моль.

Столь существенные различия в протекании второй стадии процесса в геле г1 и г2 объясняются различным механизмом протекания этих процессов. Доля полимерной матрицы в геле г1 составляет 10,72%. Процесс её деструкции протекает в присутствии образующихся в геле, под воздействием высоких температур, полифосфорных кислот, которые значительно снижают скорость разложения углеводородных соединений за счёт образования защищающих окисляющееся вещество плёнок полифосфорных кислот и нейтрализации активных радикалов оксидами фосфора. Процесс разложения, кипения и возгонки соединений фосфора продолжается до 9000С. Доля полимерной матрицы в геле г2 составляет 3,04%. В геле отсутствуют активные антипирены, поэтому процесс деструкции протекает в более узком интервале температур и завершается при более низкой температуре.

С целью оценки пригодности составов оценили огнестойкость конструкции на основе изучаемых гелей по ГОСТ 30247.0-94.

Протоколы испытаний приведены на рис. 1 и 2. Согласно проведённым испытаниям выбранные составы соответствуют классу противопожарной безопасности для геля г1 EI20, для геля г2 EI60 [1].

Підпис: Температура, °С

Рис. 1. Данные испытания многослойной конструкции на основе геля г1: 1-температура внутри печи по ГОСТ; 2-фактическая температура внутри печи; 3-температура наружного стекла

Підпис: Температура, °С

Рис. 2. Данные испытания многослойной конструкции на основе геля г2: 1-температура внутри печи по ГОСТ; 2-фактическая температура внутри печи; 3-температура наружного стекла

УДК 678.5

БАЗАЛЬТОПЛАСТИКИ НА ОСНОВЕ ПОЛИЭТИЛЕНА

И ПОЛИПРОПИЛЕНА

Т.П. Гончарова, Ю.А. Кадыкова, С.Е. Артеменко

Энгельсский технологический институт СГТУ

Базальтовые волокна являются эффективным армирующим наполнителем полимерных композиционных материалов (ПКМ) [1-3] и по своим технологическим и экономическим характеристикам успешно конкурируют с традиционными наполнителями – стеклянными и асбестовыми волокнами. Замена этих волокон базальтовыми позволяет создать ПКМ с высокими физико-механическими, эксплуатационными характеристиками и меньшей себестоимостью.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы