Коррозионные свойства титана и его сплавов
Содержание
Введение ………………………………………………………………………………………………………2
Общие представление о коррозии металлов…………………………………………………………………3
Поведение титана и его сплавов различных агрессивных средах………………………………………….5
Влияние легирующих элементов в титане на коррозионную стойкость ………………………………….7
Электрохимическая коррозия под действием внутренних макро – и микрогальванич
еских пар ……….8
Особенности взаимодействия титана с воздухом ………………………………………………………….10
Взаимодействие титана с кислородом………………………………………………………………………11
Газонасыщение титановых сплавов при окислении……………………………………………………… 12
Газонасыщение поверхности титанового сплава ВТ6…………………………………………………… 13
Явление коррозионного растрескивания……………………………………………………………………15
Защита конструкций и машин, выполненных из титана и его сплавов, от коррозии……………………17
Список используемой литературы………………………………………………………………………… 19
Введение
Создание новых технологий и производств приводит к применению агрессивных сред. Использование последних ставит вопрос о конструкционных материалах, стойких к их воздействию. Большой интерес в этом плане представляют металлы подгрупп титана и ванадия. Они уже нашли применение в современном приборостроении. Так, например, они широко используются в ракетной и авиационной технике, а также при создании ядерных реакторов.
Титан и титановые сплавы широко применяются в различных отраслях промышленности, благодаря высоким значениям удельной прочности и коррозионной стойкости.
Сплав ВТ6 относится к числу первых отечественных конструкционных титановых сплавов. В таблице 1 представлен химический состав сплава ВТ6.
Таблица 1 - Химический состав титанового сплава ВТ6.
Основные элементы | Al | V |
Примеси | Fe | Si | O | C | N | H | Zr |
Содержание, % | 6,0 | 4,0 | Содержание не более, % | 0,3 | 0,1 | 0,2 | 0,1 | 0,05 | 0,015 | 0,3 |
Титан может участвовать во многих соединениях, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии?
Общие представление о коррозии металлов
Получение металлов из их природных соединений всегда сопровождается значительной затратой энергии. Исключение составляют только металлы, встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть. Энергия, затраченная на получение металлов, накапливается в них как свободная энергия Гиббса и делает их химически активными веществами, переходящими в результате взаимодействия с окружающей средой в состояние положительно заряженных ионов:
Меn++ nе ® Ме0 (G>0); Ме0 – ne ® Ме n+ (G <0).
металлургия коррозия
Самопроизвольно протекающий процесс разрушения металлов в результате взаимодействия с окружающей средой, происходящий с выделением энергии и рассеиванием вещества (рост энтропии), называется коррозией. Коррозионные процессы протекают необратимо в соответствии со вторым началом термодинамики.
Подсчитано, что около 20% ежегодной выплавки металлов расходуется в коррозионных процессах. Большой вред приносит коррозия в машиностроении, так как из-за коррозионного разрушения какой-нибудь одной детали может выйти из строя машина, стоящая нередко десятки и сотни тысяч рублей. Коррозия снижает точность показаний приборов и стабильность их работы во времени. Незначительная коррозия электрического контакта приводит к отказу при его включении. Меры борьбы с коррозионными процессами являются актуальной задачей современной техники.
Существенно влияет на коррозионные процессы уровень внешних или внутренних (остаточных) напряжений и их распределение в металле изделия.
Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, — двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:
2Ме(т) + O2(г) 2МеО(т);
МеО(т) [МеО] (р-р)
В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.
Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга—Бэдвордса).
Коэффициент a (фактор Пиллинга — Бэдвордса) у разных металлов имеет разные значения и приведен в таблице 2.
Таблица 2. Значение коэффициента a для некоторых металлов
Металл | Оксид | a | Металл | Оксид | a |
Mg |
MgO |
0.79 |
Zn |
ZnO |
1.58 |
Pb |
PbO |
1.15 |
Zr |
ZrO2 |
1.60 |
Cd |
CdO |
1.27 |
Be |
BeO |
1.67 |
Al |
Al2O2 |
1.31 |
Cu |
Cu2O |
1.67 |
Sn |
SnO2 |
1.33 |
Cu |
CuO |
1.74 |
Ni |
NiO |
1.52 |
Ti |
Ti2O3 |
1.76 |
Nb |
NbO |
1.57 |
Cr |
Cr2O3 |
2.02 |
Nb |
Nb2O3 |
2.81 |