Имитационное моделирование на основании предварительно установленных зависимостей

Эта вероятность рассматривается как функция во всем диапазоне возможных значений величины . Функция распределения любой случайной величины является неубывающей функцией времени src="images/referats/5493/image008.png">. Примерный вид функции дан на рисунке 3.

Рис. 3 – «Функция распределения экспоненциального закона»

Так как значения не могут быть отрицательными, то . При величина стремится к единице. Таким образом, функция распределения времени обслуживания клиентов:

(1.3)

где - параметр распределения (среднее время обслуживания клиентов у кассы).

Соответственно плотность распределения:

(1.4)

Для моделирования времени обслуживания клиента у кассы проинтегрируем функцию распределения :

(1.5)

От датчика случайных чисел равномерно распределенных на интервале [0 - 1] получаем очередное число Х, которое подставляем в формулу (1.5) и вычисляем :

(1.6)

Из соотношения (1.6) найдем соответствующее Х, которое будем принимать за случайное число, обозначающее время обслуживания данной кассой.

2. ПРОГРАММНОЕ РЕШЕНИЕ

Программа имитационного моделирования работы кассового зала написана на языке C с помощью среды разработки Borland C++ 3.1.

Блок-схема: знак завершення: KASSAБлок-схема имитационного моделирования работы кассового зала

Исходный текст программы состоит из одного файла Kas1.c который содержит реализацию таких функций программы:

– float RND_DIG (void) - Функция возвращающая СЧ в диапазоне [0, 1];

– void massive (void) - Функция выделяющая память под массив времени обслуживания у каждой из касс;

– float _tau(void) - Функция возвращающая время обслуживания у кассы;

– float time_to(void) - Функция определяет время входа следующего клиента. Промежутки между входами распределены по закону Пуассона с параметром lambda;

– void inf (void) - Функция вывода информации пользователю.

РУКОВОДСТВО пользователя

1. Программа имитационного моделирования работы банка расположена по следующему адресу:

A:\Kas1.exe

2. На запрос программы:

«Введите количество касс в кассовом зале ж\\д вокзала:»

Вводим предполагаемое (данное) количество касс обслуживающих клиентов.

3. На запрос программы:

«Введите параметр распределения Пуассона для определения времени между входами пассажиров в зал:»

Вводим lambda – Параметр распределения Пуассона

4. На запрос программы:

«Введите минимальную продолжительность обслуживания у касс»

Вводим tau_min – минимальную продолжительность обслуживания.

4. На запрос программы:

«Введите максимальную продолжительность обслуживания у касс»

Вводим tau_max – максимальную продолжительность обслуживания.

5. На запрос программы:

«Введите время моделирования работы зала(в ч.):»

Вводим hours - время моделирования работы зала.

6. На запрос программы:

«Введите математическое ожидание времени обслуживания у касс:»

Вводим MO - математическое ожидание.

7. На запрос программы:

«Введите среднеквадратическое отклонение времени обслуживания у касс:»

Вводим SKO - среднеквадратическое отклонение.

8. После просмотра результатов, нажмите любую клавишу для завершения работы.

5. Листинг программы

/* Включаемие модули*/

#include<stdio.h> // Функции потокового ввода - вывода

#include<conio.h> // Формирование экракна

#include<math.h> // Математические функции

#include<alloc.h> // Функции по работе с динам. памятью

//Прототипы функций

float RND_DIG( void ); // Ф-я генерирует случ. числа

void inf( void); // Ф-я сообщает о назн-ии программы

void massive( void ); // Ф-я выделяющая память под массив

float _tau( void ); // Расчет времени обсл-я клиента у кассы

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы