Безопасность жизнедеятельности и охрана труда
Кислотные дожди известны более 100 лет, однако проблема этих дождей возникла около 25 лет назад. Источниками кислотных дождей служат газы, содержащие серу и азот. Наиболее важные из них: SO2, NO, H2S. Кислотные дожди возникают вследствие неравномерного распределения этих газов в атмосфере. Например, концентрация SO2 (мкг/м3) обычно такова: в городе 50 . 1000, на территории около города в радиус
е около 50 км 10 .50, в радиусе около 150 км 0,1 .2, над океаном 0,1. Источниками поступления соединений серы в атмосферу являются: естественные (вулканическая деятельность, действия микроорганизмов и др.) 31 .41 %, антропогенные (ТЭС, промышленность и др.) 59 .69 %; всего поступает 91 .112 млн т в год. Из соединений азота основную долю кислотных дождей дают NO и NO2 Источниками соединений азота являются: естественные (почвенная эмиссия, грозовые разряды, горение биомассы и др.) 63 %, антропогенные (ТЭС, автотранспорт, промышленность) 37 %; всего поступает 51 .61 млн т в год. Серная и азотная кислоты поступают в атмосферу также в виде тумана и паров от промышленных предприятий и автотранспорта. В городах их концентрация достигает 2 мкг/м3. Соединения серы и азота, попавшие в атмосферу, вступают в химическую реакцию не сразу, сохраняя свои свойства соответственно в течение 2 и 8 . 10 сут. За это время они могут вместе с атмосферным воздухом пройти расстояния 1000 .2000 км и лишь после этого выпадают с осадками на земную поверхность. Парниковый эффект. Состояние и состав атмосферы определяют во многом величину солнечной радиации в тепловом балансе Земли. На ее долю приходится основная часть поступающей в биосферу теплоты, дж/год: теплота от солнечной радиации составляет 99,8 %, теплота от естественных источников (из недр Земли, от животных и др.) 0,18 %, теплота от антропогенных источников (энергоустановок, пожаров и др.) — 0,02 %. Экранирующая роль атмосферы в процессах передачи теплоты от Солнца к Земле и от Земли в космос влияет на среднюю температуру биосферы, которая длительное время находилась на уровне около + 15°С. Расчеты показывают, что при отсутствии атмосферы средняя температура поверхности Земли составляла бы приблизительно - 15°С. Основная доля солнечной радиации передается к поверхности Земли в оптическом диапазоне, а излучаемая поверхностью Земли энергия — в инфракрасном (ИК). Поэтому доля отраженной лучистой энергии, поглощаемой атмосферой, зависит от количества многоатомных минигазов (СО2, Н2О, СН4, О3 и др.) и пыли в ее составе. Чем выше концентрация минигазов и пыли в атмосфере, тем меньше доля отраженной солнечной радиации уходит в космическое пространство, тем больше теплоты задерживается в биосфере за счет парникового эффекта. ИК-излучение поглощается метаном, фреонами, озоном, оксидом азота и т. п. в диапазоне длины волн 1 .9 мкм, а парами воды и углекислым газом при длине волн 12 мкм и более. В последние годы наметилась тенденция к значительному росту концентраций СО2, СН4, N2O и других газов в атмосфере. Аналогично изменяются концентрации метана, оксида азота, озона и других газов. Рост концентраций СО2 в атмосфере происходит вследствие уменьшения растительности на Земле и увеличения техногенных поступлений. Рост концентраций минигазов в атмосфере и, как следствие, повышение доли теплоты ИК-излучения, задерживаемой атмосферой, неизбежно сопровождается ростом температуры поверхности Земли. Техногенные загрязнения атмосферы не ограничиваются приземной зоной. Определенная часть примесей поступает в озоновый слой и разрушает его. Разрушение озонового слоя опасно для биосферы, так как оно сопровождается значительным повышением доли ультрафиолетового излучения с длиной волны менее 290 нм, достигающего земной поверхности. Эти излучения губительны для растительности, особенно для зерновых культур, представляют собой источник канцерогенной опасности для человека, стимулируют рост глазных заболеваний. Основными веществами, разрушающими озоновый слой, являются соединения хлора, азота. Загрязнение воды При использовании воду, как правило, загрязняют, а затем сбрасывают в водоемы. Внутренние водоемы загрязняются сточными водами различных отраслей промышленности (металлургической, нефтеперерабатывающей, химической и др.), сельского и жилищно-коммунального хозяйства, а также поверхностными стоками. Основными источниками загрязнений являются промышленность и сельское хозяйство. Загрязнители делятся на биологические (органические микроорганизмы), вызывающие брожение воды; химические, изменяющие химический состав воды; физические, изменяющие ее прозрачность (мутность), температуру и другие показатели.
Загрязнение земель. Нарушение верхних слоев земной коры происходит при: добыче полезных ископаемых и их обогащении; захоронении бытовых и промышленных отходов; проведении военных учений и испытаний и т. п. Почвенный покров существенно загрязняется осадками в зонах рассеивания различных выбросов в атмосфере, пахотные земли — при внесении удобрений и применении пестицидов. В настоящее время одной из самых острых проблем является утилизация и захоронение радиоактивных отходов и, прежде всего, отходов АЭС. Опасны и значительны отходы сельскохозяйственного производства — навоз, остатки ядохимикатов, кладбища животных.
67. Расчет естественного освещения по графикам Данилюка. Достоинство данного метода
Нормирование естественного освещения производится с помощью коэффициента естественного освещения КЕО - это отношение естественной освещенности данной точки внутри помещения к освещенности точки, находящейся под открытым небом, выраженное в %. Для определение геометрических КЕО следует применять графический метод Данилюка, пригодный для определения КЕО при легкой сплошной облачности. Этот метод сводится к тому, что полусферу разбивают на 10000 участков равной световой активности и подсчитывают какое число участков видно из данной точки помещения через светопроем, т.е. графически определяют какая часть светового потока от всей небесной полусферы попадает в расчетную точку.
Число видимых через световой проем участков небосвода находят при помощи двух графиков (рис. 32), представляющих собой пучок проекций лучей, соединяющих центр полусферы небосвода с участками равной световой активности по высоте (график /) и по ширине (график //) светового проема.
График / кладут на поперечный разрез помещения так, чтобы основание графика совпадало со следом расчетной плоскости, а полюс графика с расчетной точкой, и определяют число лучей, захватываемых контуром светопроема n1. График // помещают на план помещения так, чтобы его основание было параллельно плоскости расположения светопроема, а полюс отстоял от светопроема на расстоянии, равном расстоянию от полюса графика до середины светопроема по его высоте на поперечном разрезе. Подсчитывают число лучей n2, захватываемых контуром светопроема по его ширине. Геометрическое значение КЕО в расчетной точке (%) помещения определяют как e=0.01n1n2. Более подробное изложение метода определения КЕО и числовые значения коэффициентов приведены в СНиП II-4-79Д
Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:
Поиск рефератов
Последние рефераты раздела
- О средствах защиты органов дыхания от промышленных аэрозолей
- Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)
- О средствах индивидуальной защиты от пыли
- И маски любят счёт
- Правильное использование противогазов в профилактике профзаболеваний
- Снижение вредного воздействия загрязнённого воздуха на рабочих с помощью СИЗ органов дыхания
- О средствах индивидуальной защиты органов дыхания работающих