Термобарогеохимия в изучении кристаллических пород

Рис. 1.(слева) Микрофотография включения (отраженные электроны), на которой хорошо видна более светлая кристаллизационная кайма с блочными (расщепленными) кристаллами, растущими внутрь включения. Линия А-Б фиксирует профиль через включение.

2. Другой метод реконструкции состава захваченного расплава, основан на расчете хода обратной кристаллизации. Существуют различные эмпирические модели,

позволяющие рассчитать равновесие расплав-минерал для данной температуры или, наоборот рассчитать температуру для известных сосуществующих составов расплава и минерала. Зная состав стекла во включении, состав минерала в кайме кристаллизации и состав минерала-хозяина, который захватывал включение, можно, пошагово повышая температуру равновесия и рассчитывая для каждой температуры состав расплава и равновесной с расплавом твердой фазы, довести обратную кристаллизацию до точки, в которой состав твердой фазы будет соответствовать составу минерала-хозяина вне кристаллизационной каймы. Тогда температура такого равновесия должна отвечать температуре захвата включения, а расчетный состав стекла - составу захваченного расплава.

3. В ряде случаев можно оценить соотношения концентраций радиоактивных элементов в расплавных включениях. В качестве простого примера можно привести определение возраста по Rb-Sr методу и изотопных соотношений Pb в расплавных включениях в кварце кристаллических пород. Кварц в этих породах содержит большое количество расплавных включений. При этом, чистый кварц (без включений) содержит пренебрежимо малое количество Rb, Sr и Pb. Измерив содержания изотопов этих элементов в смеси кварца с расплавными включениями, мы не можем точно определить их содержания в стекле, но можем получить изотопные отношения. Изотопные отношения Rb и Sr позволяют определить возраст расплава, а изотопные отношения Pb являются важным геохимическим индикатором.

У грани растущего кристалла, в расплаве возникает зона (граничный слой), имеющая сложную структуру: в ней имеются градиенты составов и плотностей, причем величина этих градиентов изменяется во времени, а также в зависимости от множества параметров: температуры, геометрии кристалла и т.п. Свойства минералообразующей среды из граничного слоя, таким образом, не соответствуют объемным, и это могло бы сказаться при захвате во включение вещества из этого слоя. Однако, вследствие достаточно большой скорости диффузии, обычно происходит выравнивание составов, и существенного искажения свойств включений не происходит.

3.2.3 Методы оценки термодинамических условий образования пород.

Метод полной гомогенизации. Состояние полной гомогенизации включения фиксируется при нагреве, в тот момент, когда внутри включения останется только одна фаза (расплав), соответствующая температура называется температурой гомогенизации.

Метод гомогенизации по последнему кристаллу. При нагреве включения в нем происходит плавление дочерних фаз и растворение минерала-хозяина со стенок включения. При условии, что включение представляет собой закрытую систему, температуры плавления этих фаз будут соответствовать тем температурам при которых они кристаллизовались во включении. При растворении последней дочерней фазы, когда во включении останется только расплав и флюидная фаза (газовый пузырек), будет достигнута температура гомогенизации по последнему кристаллу (Tк), отвечающая началу кристаллизации следующей после минерала-хозяина фазы. Эта температура ниже, чем температура захвата включения, но многие исследователи ее используют, так как она дает хорошее приближение к действительной температуре захвата.

Метод искусственных парагенезисов. Он основан на возможности использовать расплавное включение как экспериментальную ампулу. Длительная выдержка расплавного включения при определенной температуре позволяет вырастить внутри этого включения минеральные парагенезисы, равновесные с расплавом внутри включения. Анализируя составы полученных минералов можно (1) определить особенности диаграммы плавкости конкретной природной системы; при этом, визуальное наблюдение за фазовыми переходами при термометрическом эксперименте позволяет точно определить температуры этих переходов; (2) по составам сосуществующих минералов в расплавном включении можно рассчитать температуры, давления и летучести кислорода. В ряде случаев (но далеко не всегда), такой подход позволяет оценить физико-химические параметры эволюции данной природной системы.

Кинетические условия проведения термометрических экспериментов значительно влияют на качество измерений. При чересчур быстром повышении температуры можно перегреть включение, особенно содержащее вязкий расплав. Скорость нагрева подбирается обычно, исходя из составов исследуемых расплавов. Например, при исследовании включений в гранитах применяют ступенчатый подъем температуры, вначале возможен довольно быстрый нагрев (10-20о/мин) с температурными остановками на 3-6 часов, чтобы дать время для установления равновесия во включении, вблизи гомогенизации скорость снижают до 1о/мин.

В водосодержащих включениях при их нагреве, особенно при медленном, могут происходить реакции типа:

2H2O(liq)+ 6FeO(liq) = 2H2 + 2Fe3O4 или H2O(liq) + 2FeO(liq) = H2 + Fe2O3(liq).

Водород легко диффундирует из включения. Поэтому, если в процессе опыта во включении появляется фаза оксидов железа, его не следует использовать.

Таким образом, для каждой конкретной серии включений, необходимо проводить специальные кинетических эксперименты для определения оптимальных условий нагрева. За истинную температуру гомогенизации принимается минимальная из всех измеренных температур. Как показывает опыт, оптимальная скорость нагрева включений в интервале температур, близких к температуре гомогенизации, лежит в пределах от 1° С/сек до 1° С/мин.

В целом, возможно три варианта поведения системы расплавного включения. В случае сухих расплавов, на температуру гомогенизации включения будет влиять только время перераспределения компонентов внутри включения (перемешивание), кинетика плавления минерала-хозяина или твердых фаз во включении. При этом, истинная температура гомогенизации будет достигнута при длительных выдержках включения в термокамере. (2) В случае богатых флюидом, маловязких расплавов время переуравновешивания расплава незначительно, но активно проходит реакция разложения воды (см. выше). При этом, истинная температура гомогенизации может быть получена только при очень быстром нагреве включения. (3) Наиболее распространен третий случай, при котором имеют значение оба вышеперечисленных фактора. При этом, необходимо очень точно подбирать условия нагрева включений, чтобы определить истинную температуру гомогенизации. Для каждой конкретной серии включений, необходимо проводить специальные серии кинетических экспериментов, для определения оптимальных условий нагрева. При этом, при любом варианте поведения системы расплавного включения, истинная температура гомогенизации будет минимальной из всех полученных температур.

Как показывают практические эксперименты, оптимальная скорость нагрева включений в интервале температур близких к температуре гомогенизации, лежит в пределах от 1° С/сек до 1° С/мин.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы