Нормированное пространство. Банахово пространство
Тогда возьмём нижнюю грань от левой и правой части этого неравенства:
Таким образом, все аксиомы нормы действительно выполнены.
3. Банаховы пространства
Определение: Расстоянием (метрикой) между двумя элементами и называется вещественное неотрицательное число, обозначаемое и подчиненное трем аксиомам:
1);
2);
3);
Определение: Последовательность точек метрического про
странства называется фундаментальной, если при
Справедливы утверждения:
1. Если последовательность сходится к некоторому пределу, то она фундаментальна
Доказательство: пусть, тогда, при
2. Всякая фундаментальная последовательность ограничена
Определим расстояние в нормированном пространстве, полагая для любых. Тогда означает, что . Это сходимость по норме.
Фундаментальная последовательность в нормированном пространстве в соответствии с определением расстояния характеризуется условием, при
Определение: Нормированное пространство называется полным, если всякая фундаментальная последовательность его элементов имеет предел.
Определение: Полное нормированное пространство называется банаховым пространством.
Литература
1. Колмогоров, А.Н. Элементы теорий функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. ¬¬– М.: Физматлит, 1967.
2. Князев, П.Н. Функциональный анализ / П.Н. Князев– Изд. 2, перераб. М., 1979.
3. Люстерник, Л.А. Элементы функционального анализа/ Л.А. Люстерник В.И. Соболев– М., 1980.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах