Системы АПЧ

Для того чтобы лучше разобраться в принципах действия рас­сматриваемых в последующих главах авторегулировок в радиоприемниках, вна­чале полезно ознакомиться с некоторыми общими вопросами теории авторегу­лирования.

Автоматическое регулирование является разделом более общей отрасли науки об управлении — кибернетики, получившей широкое развитие в последние десятилетия. Под управлением понима

ют совокупность действий, обеспечивающих работу какой-либо системы о условиях достижения заранее заданных результатов. Круг задач, решаемых кибернетикой, весьма обширен и многообразен. Она включает в себя вопросы управления самыми различными объектами от живых организмов до сложных технических систем.

Системы автоматического регулирования позволяют без участия оператора поддерживать заданный режим работы управляемого объекта, например в радиоприемнике постоянство (с заданными отклонениями) уровня выходного сигнала.

Те параметры объекта, которые подлежат стабилизации или изменению по заданному закону, называют регулируемыми параметрами. В радиоаппаратуре— это прежде всего усиление или настройка гетеродина приемника. Устройства, параметры которого подлежат регулированию, называют объектом регулирова­ния. В приемниках — это каскады усилителя, его частотно-избирательная цепь или настройка гетеродина. Элемент, осуществляющий ту или иную регулировку, называется регулятором (или управителем). На регулятор подается напряжение, содержащее информацию о необходимом его действии ир.

Различают системы АР замкнутого и разомкнутого вида. Как правило, в радиоприемниках применяют замкнутые системы АР. При воздействии на замкнутую систему АР какого-либо внешнего фактора, например сигнала в радиоприемнике, возникает переходный (динамический) процесс. Если этот про­цесс стремится к определенному установившемуся значению выходного парамет­ра объекта регулирования, т. е. она приходит в равновесие, то система являет­ся устойчивой; в противном случае система будет неустойчивой, на ее выходе устанавливаются незатухающие колебания. Такой режим, разумеется, недопус­тим, поэтому любая система ЛР должна удовлетворить требованиям устойчи­вости.

Процесс, возникающий в системе после подачи воздействующего на вход сигнала, называется переходным процессом. Его график (рис. 1.) позволяет судить о характере установления выходного напряжения ир при замкнутой цепи АР. В зависимости от схемы ЛР переходный процесс может носить, апериодический (кривая 1) или колебательный характер (кривая 2). На практике чаще пред­почтителен первый случай.

Важной характеристикой переходного процесса служит время его установ­ления, которое представляет собой отрезок времени tу, в течение которого вы­ходное напряжение достигнет некоторого наперед заданного значения. Оно ча­сто составляет 0,9 установившегося напряжения на вы­ходе. Время установления всегда выгодно иметь воз­можно меньшим, что обеспечивает большее быстродей­ствие системы АР. Но это накладывает определенные требования на ее параметры, о чем подробнее сказано ниже.

По принципу действия системы АР разделяют на два вида: статические и астатические. В системах пер­вого вида в установившемся режиме существует зави­симость между отклонением регулируемого параметра от заданного значения и начальной ошибкой (при отсутствии системы АР).

Рис. 1 Переходный динамический процесс: 1—апериодический; 2--колебательный

В системах второго вида отклонение регулируемого параметра равно нулю при любом значении первоначального отклонения.

В системах авторегулировок, применяемых в радиоприемниках, используются почти исключительно статические регуляторы, как наиболее легко реализуемые. Примером астатического регулятора может служить автоподстройка часто­ты гетеродина путем вращения пластин конденсатора его контура маломощным электродвигателем, управляемым сигналом ошибки. Все другие схемы АР, рассматриваемые в последующих главах, относятся к статическим авторегуляторам, поэтому в дальнейшем при изложении термин «статические» будем опускать.

Для установления связи между первоначальным изменением интересующей нас величины на выходе системы АР (когда ее цепь разомкнута) с изменением той же величины при замкнутой цепи АР введем такие обозначения: х—напряжение на выходе при разомкнутой цепи АР; х' — то же, при замкнутой цепи; К — коэффициент передачи регулируемого объекта (например, усилителя цепи АРУ); β— коэффициент передачи цепи АР.

Тогда, считая систему линейной (что при малых сигналах допустимо), можно составить уравнение

х'=х —х' К β,

Решив его относительно х’ находим х'=х/(1+Кβ) (1)

Произведение Кβ=Кп часто называют петлевым усилением. Поскольку обычно Кβ=Кп >>1, то можно считать х'=х \ Кп

Следовательно, величина петлевого усиления показывает, во сколько раз уменьшается ошибка (напряжение, частота и др.) при замыкании цепи АР в установившемся режиме. Формула (1) окажется полезной при рассмотрении конкретных систем АР в радиоприемниках.

С увеличением петлевого усиления остаточная ошибка уменьшается. Но из этого положения, однако, нельзя делать вывода, что она может быть сделана сколь угодно малой. Оказывается, что во многих случаях при увеличении коэффициента Кп система может оказаться неустойчивой, т. е. перейти в режим ав­токолебаний. Величина, показывающая, во сколько раз уменьшается ошибка регулируемой величины, называется коэффициентом авторегулирования Кар и приближенно равна значению петлевого усиления. Для систем АР, применяемых в радиоприемниках, нижние Кар практически может достигать десятков, сотен и более.

Необходимость применения автоподстройки частоты в супергетеродинных приемниках

Современные приемники — от простейших любительских до сложных приемных устройств профессионального назначения — выполняются по супергетеродинной схеме. На рисунке приведена структурная схема супергетеродинного приемника (цепь АРУ на схеме не приведена) см. рис. 2.

Напомним принцип действия супергетеродинного приемника. Приходящие от антенны колебания высокой частоты преобразуются в смесителе в сигнал обычно более низкой промежуточной частоты, постоянной для всех принимаемых станций. Для этого на смеситель одновременно с принимаемым сигналом по­ддается напряжение от гетеродина 3, частота которого перестраивается одновременно с высокочастотным блоком 1. Смеситель представляет собой нелинейный элемент, в котором при подаче двух напряжений (сигнала и гетеродина) обра­зуется ряд комбинационных частот, удовлетворяющих условию

Fn=mfc±nfг где m и n — целые числа (2)

Обычно в смесителях используется так называемая первая разностная ча­стота fп = fс-fг. (3)

Нетрудно видеть, что если частоты fc и fг изменять одновременно на одну и ту же величину, то промежуточная частота fп будет оставаться постоянной.

Это обстоятельство является существенным преимуществом супергетеродинного приемника по отношению к приемнику прямого усиления. В супергетеродинном приемнике имеем возможность осуществить основное усиление и избирательность на постоянной промежуточной частоте. При этомне требуется перестройка контуров УПЧ, количество которых дли получения достаточной избирательности по соседнему каналу может быть довольно значительным (больше четырех). Перестройку же одного контура гетеродина осуществить, несомненно, проще. Кроме того, в УПЧ часто применяют фильтры сосредоточенной селекции (ФСС) с фиксированной настройкой, выполненные и виде электрических (LC), электромеханических и пьезокерамических систем. В таких фильтрах легко реализовать узкую полосу пропускания при хорошей форме АЧХ. Полоса пропускания УПЧ Δfп берется достаточно узкой для реализации хорошей избирательности по соседнему каналу и уменьшения действий помех. На более низкой промежуточной частоте это легче реализовать при той же добротности контуров, чем в усилителе высокой частоты. Полосу пропускания УПЧ желательно иметь равной ширине спектра принимаемого сигнала. Однако, как увидим ниже, на практике сделать это не всегда возможно.

Страница:  1  2 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы