Старший и верхний центральный показатели линейной системы

.

Доказательство.

Так как ,

то

.

Выразим из последнего равенства :

, .

Тогда из определения 1.2 следует, что

[определение 1.6],

то есть

.

Из этого следует, что

.

Так как по определению 1.5

,

то

.

Тогда из следствия 2 получаем, что

.

Так как по определению 1.9

,

то .

(утверждение 3 доказано)

3 СТАРШИЙ И ВЕРХНИЙ ЦЕНТРАЛЬНЫЙ ПОКАЗАТЕЛИ ДЛЯ ДИАГОНАЛЬНОЙ СИСТЕМЫ

3.1 Старший и верхний центральный показатели для диагональной системы с произвольными коэффициентами

Исследуем случай, когда матрица системы с произвольными коэффициентами является диагональной. Найдем для нее и .

Рассмотрим диагональную систему

,

где ─ вектор-функция размерности . Она имеет матрицу Коши

,

то есть

,

с нормой

, где .

По определению 1.2 найдем для каждой функции ее характеристический показатель Ляпунова, используя определение 1.6:

.

Получаем, что

.

Из утверждения 1.3 и определения 1.5 вытекает, что

,

так как матрица конечномерная.

По определению 1.9

P,

где (P).

3.2 Старший и верхний центральный показатели для диагональной системы с постоянными коэффициентами. Случай .

Исследуем случай, когда матрица системы с постоянными коэффициентами является диагональной. Найдем для нее и .

Рассмотрим диагональную систему

,

где ─ вектор-функция размерности , ─ некоторые числа, .

Она имеет матрицу Коши

,

то есть

,

с нормой

.

Рассмотрим следующую лемму.

Лемма*.

Пусть ─ некоторое число. Тогда

.

Доказательство.

По определению 1.6

.

Имеем, . Что и требовалось доказать.

На основании предыдущего пункта заметим, что

.

Тогда .

Теперь покажем, что .

Пусть .

Так как для любого

,

то по определению 1.7

(P).

Тогда по определению 1.9 и лемме*

.

Так как выполняется всегда, то

.

Следовательно, для диагональной системы с постоянными коэффициентами всегда

.

4 ВЫЧИСЛЕНИЕ СТАРШЕГО И ВЕРХНЕГО ЦЕНТРАЛЬНОГО ПОКАЗАТЕЛЕЙ ДЛЯ ЗАДАННОЙ СИСТЕМЫ. СЛУЧАЙ .

4.1 Вычисление старшего показателя системы.

Рассмотрим систему

(1)

Решим ее.

,

,

получили уравнение с разделяющимися переменными.

,

,

,

.

Общее решение системы (1) имеет вид:

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы