Связь математики с музыкой

Известно открытие Пифагора в области теории музыки. Необычность его в том, что сочетание звуков, издаваемых струнами, наиболее благозвучно, если длины струн музыкального инструмента находятся в правильном численном отношении друг к другу.

Прежде чем перейти к этому описанию, надо вспомнить, что такое звук. Согласно акустике, звук распространяется в воздухе волнообразно. Это значит, что с то

го момента, как зазвучали музыкальные инструменты, от них по всему залу расходятся звуковые волны. Колебания, передаваемые через воздух, заставляют вибрировать наши барабанные перепонки, в результате чего мы и улавливаем звук. Долгое время не было единого мнения о том, что определяет приятное для слуха звучание струны (в музыке это явление называют консонансом). Одни считали, что это зависит от натяжения струны, другие видели ответ в том, что длина струны - причина того или иного звучания, третьи определяли консонанс с помощью высоты тона. Ясность в этом вопросе наступила после Архита (IV в. до н.э.), который сущность высоты тона видел не в длине струны и не в силе натяжения, а в скорости ее движения, т.е. скорости ударения струны по частичкам воздуха.

Это значит, что длины струн l1, l2 и l4 связаны между собой средним арифметическим.

Итак, квинта является средним арифметическим частот основного тона w1 и октавы w2, а кварта - средним гармоническим w1 и w2. Или иначе: квинта есть среднее гармоническое длин струн основного тона l1 и октавы l2, а кварта - среднее арифметическое l1 и l2. Это лишь незначительная часть тех прекрасных пропорций, которые были воплощены в пифагорейской музыкальной гамме. Гармонию звуков пифагорейцы считали лишь проявлением более глубокой гармонии - красоты окружающего мира. Пифагорейцы известны в истории эстетики благодаря еще одной теории. Она также была связана с музыкой, но имела иной характер. Если первая теория, как мы убедились, была построена на математических пропорциях, то вторая теория провозглашала музыку силой, способной воздействовать на душу. Хорошая музыка может улучшить душу, а плохая - испортить ее. Такое музыкальное действие греки называли психагогией, или управлением душами.

У древних греков существовал и другой способ построения музыкальной гаммы, кроме описанного выше. Он был более простым и удобным и до сих пор применяется при настройке музыкальных инструментов.

Оказывается, гамму можно построить, пользуясь лишь совершенными консонансами - квинтой и октавой. Суть этого метода состоит в том, что от исходящего звука, например "до" (3/2)О = 1, мы движемся по квартам вверх и вниз и полученные звуки собираем в одну октаву. И тогда получаем: (3/2)1= 3/2 - соль, (3/2)2:2 = 9/8 - ре, (3/2)3:2 =27/16 - ля, (3/2)4:22 = 81/64 - ми, (3/2)5: 22 = 243/128 - си, (3/2)-1:2 =4/3 - фа.

Располагая эти звуки по порядку, получаем пифагоров строй лидийской гаммы. Исходя из возможных построений звукоряда были получены несколько названий тетрахорда - четырехступенного звукоряда в пределах кварты. Это были дорийский, фригийский и уже упомянутый лидийский строй музыкальной гаммы.

Последнее построение музыкальной гаммы обладает такой особенностью: двигаясь по квинтам вверх и вниз, не получится точного октавного повторения исходного звука. Лишь 12 квинт приближенно равны 7 октавам, а разделяющий их интервал называется пифагоровой коммой. Несмотря на свою малость, пифагорова комма на протяжении столетий "резала ухо" музыкантам. Взяв отношение (3/2)12:27, можно найти численное значение пифагоровой коммы (1,0136).

Итак, гармония космоса была воплощена пифагорейцами в сфере музыки. Идея совершенства окружающего мира владела умами ученых и в последующие эпохи. В первой половине XVII в. И.Кеплер установил семь основных гармонических интервалов: октаву - 2/1, большую сексту - 5/3, малую сексту - 8/5, чистую квинту - 3/2, чистую кварту - 4/3, большую терцию - 5/4 и малую терцию - 6/5. С помощью этих интервалов он выводит весь звукоряд как мажорного, так и минорного наклонения. После долгих поисков гармоничных отношений "на небе", проделав огромную вычислительную работу, И.Кеплер установил, что отношения экстремальных углов скоростей для некоторых планет близки к гармоническим: Марс - 3/2, Юпитер - 6/5, Сатурн - 5/4. "Солнце гармонии засияло во всем блеске. Небесное движение есть не что иное, как ни на миг не прекращающаяся музыка", - так думал ученый. Здесь Кеплера не оставляет буйная фантазия. Небольшие расхождения в расчетах и наблюдениях он обьясняет тем, что небесный секстет должен звучать одинаково согласно и в мажоре, и в миноре, а для этого ему необходимо иметь возможность перестраивать свои инструменты.

Далее Кеплер пишет о том, что Сатурн и Юпитер "поют" басом, а Марс - тенором, Земля и Венера - альтом, а Меркурий - дискантом. Никаких доказательств он не приводит. Выполняя многочисленные расчеты, ученый устал в поисках всеобщей гармонии. "Мой мозг устает, когда я пытаюсь понять, что я написал, и мне уже трудно восстановить связь между рисунками и текстом, которую я сам когда-то нашел", - писал знаменитый астроном и математик. Наступало новое время в естествознании: на смену поискам И.Кеплера шли открытия Ньютона.

XVII век ознаменовался новыми открытиями в области математики. В 1614 году опубликованы таблицы логарифмов. Их автор - шотландец Д.Непер. Он не был математиком по профессии. Получив хорошее образование у себя на родине, Д.Непер занимался астрономией и математикой как любитель и добился некоторых важных открытий. Теперь его именем называют ряд правил и формул сферической геометрии. Впоследствии в предисловии к своему сочинению, посвященному таблицам, он писал: "Я всегда старался, насколько позволяли мои силы и способности, отделаться от скуки и трудности вычислений, докучность которых обыкновенно отпугивает многих от изучения математики".

XVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А.Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы . Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от лат. соразмерность). В чем же состояло математическое описание равномерно-темперированного строя?

Вначале было дано физическое определение звука. Музыкальный тон, как уже говорилось, есть колебательный процесс с некоторой фиксированной частотой. Известно, что человеческое ухо способно воспринимать колебания частоты от 16 до 20000 гц. Если рассмотреть таблицу для среднего, наиболее употребительного участка частот в диапазоне первой октавы фортепиано, то увидим следующие частоты:

Эти частоты выбраны не случайно, ведь в основе устройства музыкальной гаммы лежат определенные закономерности. Шкала полностью определяется, если известно число ее ступеней между частотой w и частотой 2w. Для построения гаммы гораздо удобнее пользоваться, оказывается, логарифмами соответствующих частот: log2w0, log2w1 .log2wm. Октава (w0,2w0) при этом перейдет в промежуток от log2w0 до log2w0 = log2w0+1, т.е. в промежуток длиной 1. Геометрическая прогрессия w0,w1, ,wm будет соответствовать арифметической log2w0, , , , или , , , , . Разность этой прогрессии равна . Таким образом, на оси логарифмов шкала будет состоять из точек А, А+1/m; А+2/m; .; А+1, где А - величина . На сколько же частей должна быть разделена музыкальная шкала, чему равно m? Анализ многих традиционных примеров народной музыки показал, что чаще всего в ней встречаются интервалы, выражаемые с помощью отношений частот: 2 (октава), 3/2 (квинта), 5/4 (терция), 4/3 (кварта), 5/3 (секста), 9/8 (секунда), 15/8 (септима). Эти и другие выводы показали, что музыкальная шкала должна быть разделена на 12 частей. Найдем теперь соответствующие значения логарифмов по основанию двух приведенных выше отношений. На рисунке шкала разделена на 12 равных отрезков. Здесь мы видим указанные частоты и их логарифмы. Построенная двенадцатиступенная шкала реализует перечисленные ранее условия. Отношение соседних частот равномерно-темперированного строя постоянно и равно .

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы