Производная и ее применение для решения прикладных задач

Пример 2

Требуется построить открытый цилиндрический резервуар вместимостью . Материал имеет толщину d. Какими должны быть размеры резервуара (радиус основания и высота), чтобы расход материала был наименьшим?

Решение.

Радиус основания внутреннего цилиндра обозначим через х, высоту внутреннего цилиндра через h. Объем дн

а и стенки резервуара

С другой стороны, по условию , откуда

Подставляя в (*), находим

Полученную функцию нужно исследовать на экстремум при х>0:

Единственный положительный корень производной – это точка Она и дает решение задачи. При этом

3.3 Определение периода функции

Пример 1.

Является ли периодической функция ?

Решение

Воспользуемся следующим утверждением: если дифференцируемая в каждой точке числовой прямой функция имеет период Т, то ее производная также имеет период Т.

Предположим, что данная функция является периодической с периодом Т. Применяя формулу

,

получаем

где .

Имеем

Поскольку по предположению функция имеет период Т, то функция , а следовательно, и функция также имеют период Т.

Значит, и функция

Также имеет период Т. Отсюда следует, что существует число , , такое, что Т=. Аналогично показывается, что существует число , такое, что Т=.

Но тогда

т.е. число является рациональным, что неверно. Следовательно данная функция НЕ является периодической.

3.4 Нахождение приближенных значений функции

Пример 1.

Найти приращение и дифференциал функции в точке х=2 при и при . Найдите абсолютную и относительные погрешности, которые мы допускаем при замене приращения функции ее дифференциалом.

Решение

При х=2 и имеем

Абсолютная погрешность

Относительная погрешность то есть относительная погрешность будет около 4%.

При х=2 и имеем

Абсолютная погрешность а относительная погрешность то есть относительная погрешность будет уже около 0,4%.

Пример 2

Пользуясь понятием дифференциала функции вычислите приближенно изменение, претерпеваемое функцией при изменении х от значения 5 к значению 5,01.

Решение.

В данном случае будем считать х=5, а . Изменение функции

3.5 Нахождение величины угла между прямыми и кривыми.

Углом между графиками функций и в точке их пересечения называется угол между касательными к их графикам в этой точке (рис.).

Пример 1.

Найти угол между графиками функций и

в точке их пересечения (с положительной абсциссой).

Решение.

Абсциссы точек пересечения данных графиков удовлетворяют уравнению

И тем самым следующей системе:

Отсюда находим, что графики функций пересекаются в двух точках, абсциссы которых равны 0 и 2. Найдем тангенсы углов наклона касательных к обоим графикам функций в точке с абсциссой, равной 2. Имеем

Отсюда и Так как , то уравнения касательных к графикам функций и в точке (2;2) соответственно имеют вид

и

т.е.

и

Следовательно величина угла между касательными удовлетворяют уравнению

и тем самым графики функций и в точке с абсциссой х=2 пересекаются под углом, равным

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы